首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
化学   57篇
晶体学   4篇
力学   4篇
数学   5篇
物理学   20篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1991年   2篇
  1986年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有90条查询结果,搜索用时 62 毫秒
21.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   
22.
Bidentate phosphine ligands in palladium-catalyzed intramolecular Heck reactions of 2-chloroquinolin-3-yl-(1-homoallyl)alcohols are described to afford facile synthesis of 3-methylene-2,3-dihydro-1H-cyclopenta[b]quinolines in improved yields. We further observed using bulky aromatic phosphine ligand in Pd-catalyzed intermolecular Heck coupling reaction at olefinic centers with iodobenzene also favored exclusively Heck products in excellent yield.  相似文献   
23.
A combination of a single crystal X-ray diffraction study and density functional theory calculations has been applied to a bidentate Schiff base compound to elucidate different cooperative non-covalent interactions involved in the stabilization of the keto form over the enol one in the solid state. The single crystal X-ray structure reveals a remarkable supramolecular assembly of the keto form through a cyclic hydrogen bonded dimeric motif. The most interesting feature in the supramolecular assembly is the formation of a 'dimer of dimer' motif by π···π, CH···π and N···O/O···O interactions in which the π···π interaction involving the aromatic phenyl ring and the intramolecularly hydrogen bonded pseudo-aromatic ring of the keto form lying just above or below the phenyl ring of the other dimer seems to be unprecedented. The optimized geometry of the hydrogen bonded dimeric motif of the keto form of the organic molecule has been obtained by DFT calculations and agrees very well with that found within the crystalline state. The X-ray crystallographic geometry of the 'dimer of dimer' has also been computed, which shows that in the HOMO, the π electrons are localized in the phenyl rings away from each other, while in the LUMO, there is a strong π-π interaction between the phenyl ring of one dimer with the pseudo-aromatic ring of another dimer with an energy estimated to be 7.95 kJ mol(-1). Therefore, on HOMO → LUMO excitation there is localization of π electrons in the central part of the complex moiety which plays a stabilizing role of the dimer of dimer motif in the solid state.  相似文献   
24.
Two novel organic-inorganic hybrid tungsto- and molybdo-telurates having formula [{Na(4)(H(2)O)(14)}{Cu(gly)}(2)][TeMo(6)O(24)] (1){gly = glycine} and [{Cu(en)(2)}(3){TeW(6)O(24)}]·6H(2)O {en = ethyline-diamine} (2) based on Anderson type heteropolyoxometalates (POMs) have been synthesized and characterized by X-ray crystallography. Common structural feature of both 1 and 2 is the presence of a unique 1D open rack-like architecture, where the disc shaped Anderson POMs act as steps and cationic Cu-organic complexes act as handles of the rack. In 1 the independent structural unit is a 1D coordination polymer with the above mentioned rack type architecture, while in 2, these independent rack-like architectures are further extended to a 2D coordination polymer. Heterogeneous catalysis for the epoxidation of cyclohexene and styrene by complexes 1 and 2 showed very good catalytic efficiency resulting epoxides of ~60% yield, with dialcohol formed by the hydrolysis of epoxides, as the other major product (~28%). Cyclic voltammetric studies of [{Na(4)(H(2)O)(14)}{Cu(gly)}(2)][TeMo(6)O(24)] (1) in aqueous KCl solution indicates that the redox changes occur only on the copper centers and supported by carrying out parallel experiments on the precursors like ([Cu(gly)(2)](2+) and [TeMo(6)O(24)](6-), under the identical experimental conditions. The E(1/2) = 0.662, -0.142 and -0.332 V(vs. SCE) correspond to Cu(III) → Cu(II), Cu(II) → Cu(I) and Cu(I) → Cu(0) reductions, respectively. Thermal analyses reveal identical phase transition reactions with an exothermic peak in the DTA curve at 380 °C for 1 and an endothermic peak appears at comparatively higher temperature (408 °C) for 2 manifesting the higher stability of tungstane based POM over the molybdenum ones. EPR as well as magnetic moment results indicate that both the complexes 1 and 2 are paramagnetic with one unpaired electron per copper(II) ion.  相似文献   
25.
Mesoporous materials have been proposed for use in numerous biological environments such as substrates for cell culture and controlled release for drug delivery. Although mesoporous silica synthesis is facile, recent reports (Dunphy et al. Langmuir 2003, 19, 10403; Bass et al. Chem. Mater. 2007, 19, 4349) have demonstrated instability (dissolution) of pure mesoporous silica films under biologically relevant conditions. In this work, we demonstrate a simple processing handle (pressure) to control the dissolution of mesoporous silica films that are synthesized using preformed template films and supercritical CO 2. Spectroscopic ellipsometry is utilized to quantify changes in both the film thickness and porosity; these properties provide insight into the dissolution mechanism. The pore size increases as the films are exposed to phosphate-buffered saline (PBS) through preferential dissolution at the pore wall in comparison to the film surface; a mechanism reminiscent of bulk erosion of scaffolds for drug delivery. Thin mesoporous silica film lifetimes can be extended from several hours using traditional sol-gel approaches to days by using CO 2 processing for identical film thickness. Osteoblast attachment and viability on these films was found to correlate with their increased stability. This enhanced stability opens new possibilities for the utilization of mesoporous silica for biological applications, including drug delivery and tissue engineering.  相似文献   
26.
Elastic scattering angular distributions have been measured for 7Be + 9Be system at Elab = 17, 19 and 21 MeV in the angular range θcm=26–58°, and for 7Li + 9Be system at Elab= 15.75, 24 and 30 MeV. An optical model (OM) analysis of these data have been carried out. For the 7Li + 9Be system fusion cross sections were obtained at Elab = 15.75, 24 and 30 MeV by measuring the α-evaporation spectra from the compound nucleus at backward angles. The measured α-evaporation spectra were reproduced by the statistical model calculations and fusion cross sections were extracted therefrom. The ratios of the experimental fusion cross sections to the total reaction cross sections (obtained form OM analysis) were found to be rather small. This result suggests that break-up process has a strong influence on fusion process leading to a reduction in fusion cross section.  相似文献   
27.
Two high-performance liquid chromatography (HPLC) procedures, a rapid normal-phase isocratic method for the analysis primarily of retinol and retinoic acid on a 3 mu silica column, and a reversed-phase gradient method for the simultaneous analysis of retinoids and very polar to nonpolar carotenoids on a 3 mu C18 column, are described. The normal-phase isocratic HPLC procedure is rapid (12 min), requires a sample size of 100 microl or less of serum, and is suitable for routine analysis of retinol in any serum, and of retinol and retinoic acid in serum after administration of retinoic acid. The reversed-phase gradient method is suitable for the simultaneous analysis of very polar to nonpolar carotenoids such as epoxy-xanthophylls and xanthophyll esters, along with other carotenoids and retinoids that occur normally in human serum and other plant and animal tissues. A run time of 30-70 min is necessary, depending on the presence or absence of xanthophyll esters in the sample.  相似文献   
28.
The ground electronic state of C(BH)2 exhibits both a linear minimum and a peculiar angle‐deformation isomer with a central B‐C‐B angle near 90°. Definitive computations on these species and the intervening transition state have been executed by means of coupled‐cluster theory including single and double excitations (CCSD), perturbative triples (CCSD(T)), and full triples with perturbative quadruples (CCSDT(Q)), in concert with series of correlation‐consistent basis sets (cc‐pVXZ, X=D, T, Q, 5, 6; cc‐pCVXZ, X=T, Q). Final energies were pinpointed by focal‐point analyses (FPA) targeting the complete basis‐set limit of CCSDT(Q) theory with auxiliary core correlation, relativistic, and non‐Born–Oppenheimer corrections. Isomerization of the linear species to the bent form has a minuscule FPA reaction energy of 0.02 kcal mol?1 and a corresponding barrier of only 1.89 kcal mol?1. Quantum tunneling computations reveal interconversion of the two isomers on a timescale much less than 1 s even at 0 K. Highly accurate CCSD(T)/cc‐pVTZ and composite c~CCSDT(Q)/cc‐pCVQZ anharmonic vibrational frequencies confirm matrix‐isolation infrared bands previously assigned to linear C(BH)2 and provide excellent predictions for the heretofore unobserved bent isomer. Chemical bonding in the C(BH)2 species was exhaustively investigated by the atoms‐in‐molecules (AIM) approach, molecular orbital plots, various population analyses, local mode vibrations and force constants, unified reaction valley analysis (URVA), and other methods. Linear C(BH)2 is a cumulene, whereas bent C(BH)2 is best characterized as a carbene with little carbone character. Weak B–B attraction is clearly present in the unusual bent isomer, but its strength is insufficient to form a CB2 ring with a genuine boron–boron bond and attendant AIM bond path.  相似文献   
29.

Abstract  

The versatility of nitroaliphatics is demonstrated by using it in the syntheses of artemisinin derived dimers. A few novel artemisinin derived dimer and monomer have been synthesized using nitroalkane as linker.  相似文献   
30.
13C-NMR spectra of trityl cellulose (Tr-Cell), tosyl cellulose (Ts-Cell), cellulose S-methyl xanthate (Cell-M-Xan), and cellulose formate (CF) in dimethylsulfoxide-d6 were analyzed at 50.4 MHz. It was found that the distribution of substituents in the anhydroglucose units of these cellulose derivatives can be estimated from their ring carbon spectra. The results showed that (i) in Tr-Cell having degree of substitution (DS) lower than 1, the hydroxyl groups at C-6 carbon position are selectively tritylated, (ii) in the case of Ts-Cell, the difference in the relative DS value among three different types of hydroxyl groups is not large, although the relative reactivities of hydroxyl groups toward tosylation decrease in the order C-6 > C-2 > C-3, (iii) in Cell-M-Xan, the hydroxyl groups at C-3 carbon position are mainly substituted, and (iv) the ease of formylation is C-6 > C-2 > C-3. The 100.8 MHz 13C-NMR spectra of O-methyl cellulose (MC) revealed that the reactivity order in commercial MC prepared from alkali cellulose is C-6 ? C-2 > C-3. Concerning MC, its water solubility was also discussed in terms of the distribution of substituents along the cellulose chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号