首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   10篇
  国内免费   9篇
化学   235篇
力学   5篇
数学   54篇
物理学   12篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   9篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   21篇
  2010年   15篇
  2009年   13篇
  2008年   26篇
  2007年   21篇
  2006年   22篇
  2005年   23篇
  2004年   24篇
  2003年   15篇
  2002年   16篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
101.
Use of PhPyCNO (-)/X (-) "blends" (PhPyCNOH = phenyl 2-pyridyl ketoxime; X (-) = OH (-), alkanoato, ClO 4 (-)) in copper chemistry yielded trinuclear clusters that have been characterized as inverse-9-metallacrown-3 compounds and accommodate one or two guest ligands. The magnetic behavior showed a large antiferromagnetic interaction and a discrepancy between the low-temperature magnetic behavior observed experimentally and that predicted from a magnetic model. The discrepancy between the Brillouin curve and the experimental result provides clear evidence of the influence of the antisymmetric interaction. Introducing the antisymmetric terms derived from the fit of the susceptibility data into the magnetization formula caused the simulated curve to become nearly superimposable on the experimental one. The EPR data indicated that the compound [Cu 3(PhPyCNO) 3(mu 3-OH)(2,4,5-T) 2] ( 1), where 2,4,5-T is 2,4,5-trichlorophenoxyacetate, has isosceles or lower magnetic symmetry (delta not equal 0), that antisymmetric exchange is important ( G not equal 0), and that Delta E > hnu. The structures of the complexes 1 and [Cu 3(PhPyCNO) 3(mu 3-OH)(H 2O)(ClO 4) 2] ( 2) were determined using single-crystal X-ray crystallography. Theoretical calculations based on density functional theory were performed using the full crystal structures of 1, 2, [Cu 3(PhPyCNO) 3(OH)(CH 3OH) 2(ClO 4) 2] ( 3), and [Cu 3(PhPyCNO) 3(mu 3-OMe)(Cl)(ClO 4)] ( 4). The geometries of the model compounds [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-OH)(mu 2-HCOO)(HCOO)] ( 5), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 2-HCOO)(HCOO)] (+) ( 6), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-O)] (+) ( 7), and [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3] (3+) ( 8) were optimized at the same level of theory for both the doublet and quartet states, and vibrational analysis indicated that the resulting equilibrium geometries corresponded to minima on the potential energy surfaces. Both e g and t 2g magnetic orbitals seem to contribute to the magnetic exchange coupling. The latter contribution, although less important, might be due to overlap of the t 2g orbitals with the p-type orbitals of the central triply bridging oxide ligand, thereby affecting its displacement from the Cu 3 plane and contributing to the antiferromagnetic coupling. The crucial role of the triply bridging oxide (mu 3-O) ligand on the antiferromagnetic exchange coupling between the three Cu(II) magnetic centers is further evidenced by the excellent linear correlation of the coupling constant J with the distance of the mu 3-O ligand from the centroid of the Cu 3 triangle.  相似文献   
102.
The solution phase behavior of short, strictly alternating multiblock copolymers of type (A(n)B(n))(m) was studied using lattice Monte Carlo simulations. The polymer molecules were modeled as flexible chains in a monomeric solvent selective for block type A. The degree of block polymerization n and the number of diblock units per chain m were treated as variables. We show that within the regime of parameters accessible to our study, the thermodynamic phase transition type is dependent on the ratio of m / n. The simulations show microscopic phase separation into roughly spherical aggregates for m / n ratios less than a critical value and first-order macroscopic precipitation otherwise. In general, increasing m at fixed n, or n at fixed m, promotes the tendency toward macroscopic phase precipitation. The enthalpic driving force of phase change is found to universally scale with chain length for all multiblock systems considered and is independent of the existence of a true phase transition. For aggregate forming systems at low amphiphile concentrations, multiblock chains are shown to self-assemble into intramolecular, multichain clusters. Predictions for microstructural dimensions, including critical micelle concentration, equilibrium size, shape, aggregation parameters, and density distributions, are provided. At increasing amphiphile density, interaggregate bridging is shown to result in the formation of networked structures, leading to an eventual solution-gel transition. The gel is swollen and consists of highly interconnected aggregates of approximately spherical morphology. Qualitative agreement is found between experimentally observed physical property changes and phase transitions predicted by simulations. Thus, a potential application of the simulations is the design of multiblock copolymer systems which can be optimized with regard to solution phase behavior and ultimately physical and mechanical properties.  相似文献   
103.
104.
Bunsen's cacodyl disulfide, Me2As(S)‐S‐AsMe2 ( 1 ), reacted with iodine giving the novel dimethylarsinosulfenyl iodide, Me2As‐S‐I ( 3 ) although theoretical calculations indicated that the AsV compound Me2As(S)‐I ( 4 ) was more stable in the gas phase. The oily product was stable neat and as a solution in CDCl3 at +4 °C and –20 °C for at least 15 d. Light, H2O, H2O2, and Zn dust, but not NaI or Ag, decomposed it. Compound 3 did not interact with Ph3N, with Ph2NH and PhNH2 it interacted but not reacted. 3 was decomposed by piperidine, with pyridine and 4‐dimethylaminopyridine it interacted and produced Me2As‐SS‐AsMe2 ( 2 ) and I2 that formed charge transfer complexes Base · I2, whereas Et3N decomposed 3 , and 3Et3N · 2I2 was isolated. 3 was desulfurized by Ph3P and (Me2N)3P completely, and by (PhO)3P and (PhS)3P partially. The reactions of 3 with (Me2N)3P, (PhS)3P, and (EtO)3P were complicated. From the AsIII nucleophiles, only Ph3As was bound, while (PhS)3As reacted slowly in a complicated manner with 3 . No interaction of 3 with MeOH or PhOH was observed but NaOH, Ag2O, and PhONa decomposed it. Thiophenol produced traces of Me2As‐SPh ( 10 ) and sodium thiophenolate attacked mainly at AsIII of 3 . Thus, externally stabilized sulfenium ions of the type Me2As‐S‐Nu+I were not obtained.  相似文献   
105.
The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg2+ metal–organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05–5 % v/v) in various organic solvents through an unusual turn‐on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.  相似文献   
106.
A new approach for the synthesis of amide macrocycles, based on the use of organo-clay derivatives as controlling template, is proposed as an alternative to the rotaxane method. Dications of p-xylylene diamine inserted in the clay interlayer space act as molding pillars around which neutral diamine molecules are erected via hydrogen bonding and pi-pi interactions to form supramolecular arrays. Condensation of diamines in the supramolecular arrays with diacetyl dichlorides yields various tetramide macrocycles in good yields. Shape, aromaticity and dimensions of the reactants are factors affecting the condensation reaction.  相似文献   
107.
The electronic structure, chemical bonding, and excitation spectra of neutral, cationic, and anionic diatomic molecules of Cu and 14 group elements formulated as [CuE]+/0/? (E = C, Si, Ge, Sn, Pb) were investigated by density functional theory (DFT) and time‐dependent (TD)‐DFT methods. The electronic and bonding properties of the diatomics analyzed by natural bond orbital (NBO) analysis approch revealed a clear picture of the chemical bonding in these species. The spatial organization of the bonding between Cu and E atoms in the [CuE]+/0/? (E = Si, Ge, Sn, Pb) molecules can easily be recognized by the cut‐plane electron localization function representations. Particular emphasis was given on the absorption spectra of the [CuE]+/0/? which were simulated using the results of TD‐DFT calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP functional. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2012 Wiley Periodicals, Inc.  相似文献   
108.
The neutral, five-coordinate platinum nitrosyl compounds [Pt(C(6)F(5))(3)(L)(NO)] (2) [L=CNtBu (2 a), NC(5)H(4)Me-4 (2 b), PPhMe(2) (2 c), PPh(3) (2 d) and tht (2 e)] have been prepared by the reaction of [NBu(4)][Pt(C(6)F(5))(3)(L)] (1) with NOClO(4) in CH(2)Cl(2). The ionic compound [N(PPh(3))(2)][Pt(C(6)F(5))(4)(NO)] (4) has been prepared in a similar way starting from the homoleptic species [N(PPh(3))(2)](2)[Pt(C(6)F(5))(4)] (3). Compounds 2 and 4 are all diamagnetic with [PtNO](8) electronic configuration and show nu(NO) stretching frequencies at around 1800 cm(-1). The crystal and molecular structures of 2 c and 4 have been established by X-ray diffraction methods. The coordination environment for the Pt center in both compounds can be described as square pyramidal (SPY-5). Bent nitrosyl coordination is observed in both cases with Pt-N-O angles of 120.1(6) and 130.2(7) degrees for 2 c and 4, respectively. The bonding mechanism of the nitrosyl ligand coordinated to various model [Pt(II)R(4)](2-) (R=H, Me, Cl, CN, C(6)F(5) or C(6)Cl(5)) and [Pt(C(6)F(5))(3)(L)](-) (L=CNMe, PH(3)) systems has been studied by density functional calculations at the B3LYP level of theory, using the SDD basis set. The R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO interactions generally involve two components: i) a direct Pt-NO bonding interaction and ii) multicenter-bonding interactions between the N atom of the NO ligand and the donor atoms of the R and L ligands. Moreover, with the more complex R groups, C(6)F(5) or C(6)Cl(5), a third component has been found to arise, which involves multicenter electrostatic interactions between the positively charged NO ligand and the negatively charged halo-substituents in the ortho-position of the C(6)X(5) groups (X=F, Cl). The contribution of each component to the Pt-NO bonding in R(4)Pt-NO and (C(6)F(5))(3)(L)Pt-NO compounds seems to be modulated by the electronic and steric effects of the R and L ligands.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号