A novel carbon paste ion selective electrode for determination of trace amount of lutetium was prepared. Modified (functionalized) multiwalled carbon nanotubes (f‐MWCNTs) were used for improvement of a lutetium carbon paste sensor response. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. In this work it is shown that introducing certain functional groups on MWCNTs can improve the electrode signals. The electrode composition of 20 % paraffin oil, 56 % graphite powder, 18 % ionophore and 6 % f‐MWCNTs showed the stable potential response to Lu3+ ions with the Nernstian slope of 21.1 (±0.3) mV decade?1 over a wide linear concentration range of 1.0×10?6–1.0×10?1 mol L?1. The electrode has fast response time (<15 s) and long term stability (about one month). 相似文献
The role of low-lying π* orbitals in dye-sensitized solar cells based on mesoporous thin films of anatase TiO(2) nanocrystallites remains unknown. Herein we report three ruthenium compounds, cis-Ru(dcbq)(2)(NCS)(2), cis-Ru(dcbq)(bpy)(NCS)(2), and cis-Ru(dcb)(bq)(NCS)(2), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO(2)H)(2)-2,2'-bipyridine, bq is 2,2'-biquinoline, and dcbq is 4,4'-(CO(2)H)(2)-2,2'-biquinoline, that were synthesized, characterized, and contrasted with the well-known N3 compound (i.e., cis-Ru(dcb)(2)(NCS)(2)) in dye-sensitized solar cells. These compounds maintain the same cis-Ru(NCS)(2) core with a systematic variation in the energy of the π* orbitals of the diimine ligand: bpy > dcb > bq > dcbq. The lowered π* orbitals resulted in enhanced red absorption relative to N3. With HCl pretreated TiO(2) in regenerative solar cells, sensitization from 400 to 900 nm was realized with cis-Ru(dcb)(bq)(NCS)(2) and global power conversion efficiencies as high as 6.5% were achieved under 1 sun of AM 1.5 irradiation. The energy conversion efficiency was found to be acutely sensitive to the presence of p-tert-butylpyridine (TBP) in a 0.5 M LiI/0.05 M I(2) acetonitrile electrolyte. Nanosecond transient absorption studies revealed that the addition of TBP decreased the excited-state injection yield for the compounds with biquinoline ligands. Spectro-electrochemical studies showed that the HCl pretreatment lowered the effective density of TiO(2) acceptor states and confirmed that the presence of TBP raised them toward the vacuum level. There was no spectroscopic data to support the hypothesis that the π* levels of the diimine ligand mediate back-electron transfer to the oxidized dye or the redox mediator was found. 相似文献
A new chromium(III) PVC membrane sensor incorporating p‐tertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water. 相似文献
The mechanism of hydroxyl radical initiated degradation of a typical oil sands process water (OSPW) alicyclic carboxylic acid was studied using cyclohexanoic acid (CHA) as a model compound. By use of vacuum ultraviolet irradiation (VUV, 172 nm) and ultraviolet irradiation in the presence of hydrogen peroxide UV(254 nm)/H(2)O(2), it was established that CHA undergoes degradation through a peroxyl radical. In both processes the decay of the peroxyl radical leads predominantly to the formation of 4-oxo-CHA, and minor amounts of hydroxy-CHA (detected only in UV/H(2)O(2)). In UV/H(2)O(2), additional 4-oxo-CHA may also have been formed by direct reaction of the oxyl radical with H(2)O(2). The oxyl radical can be formed during decay of the peroxyl-CHA radical or reaction of hydroxy-CHA with hydroxyl radical. Oxo- and hydroxy-CHA further degraded to various dihydroxy-CHAs. Scission of the cyclohexane ring was also observed, on the basis of the observation of acyclic byproducts including heptadioic acid and various short-chain carboxylic acids. Overall, the hydroxyl radical induced degradation of CHA proceeded through several steps, involving more than one hydroxyl radical reaction, thus efficiency of the UV/H(2)O(2) reaction will depend on the rate of generation of hydroxyl radical throughout the process. In real applications to OSPW, concentrations of H(2)O(2) will need to be carefully optimized and the environmental fate and effects of the various degradation products of naphthenic acids considered. 相似文献
Functionalized SBA-15 (immobilization of Pd on the modified SBA-15) has been used as an efficient catalyst for the preparation of spiroindolines by multi-component reactions of isatins, cyclic-1,3-diketones, and 6-amino-1,3-dimethyluracil under ultrasonic irradiation in water. The catalyst has been characterized by X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption analysis, temperature-programmed desorption (TPD), and thermogravimetric analysis (TGA). The advantages of this method include the reusability of the catalyst, low catalyst loading, excellent yields in short reaction times and easy separation of products, and use of ultrasonic irradiation as a valuable and powerful technology.
The manipulation of electromagnetic surface waves on interfaces that have arbitrary shape geometrical disorders has gained a lot of interest owing to its wealth of advantages in modern photonics and plasmonics devices. In this paper, based on the well-established method of transformation optics, a reconfigurable cloak that is competent in guiding the propagation of surface plasmon polaritons (SPPs) at a distorted metal-dielectric interface is introduced. The presented cloak consists of a homogeneous anisotropic material, dubbed as optic null medium (ONM) that is independent of the cloak geometrical shape. Whilst the homogeneity property of ONMs leads to the feasibility in fabrication, the shape independency feature yields an on-demand control over the flow of SPPs, simply by changing the shape of the cloak while leaving its constituent material unchanged. In order to authenticate the idea, a triangular-shape SPP cloak is designed and fabricated experimentally at microwave frequency. It is observed that by utilizing the designed cloak almost total transmission can be obtained from the distorted interface. The unique designing approach introduced here may open a new horizon to nano-optics and downscaling of photonic circuits. 相似文献