首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   14篇
化学   264篇
晶体学   6篇
力学   7篇
数学   8篇
物理学   44篇
  2024年   3篇
  2023年   5篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   10篇
  2014年   24篇
  2013年   22篇
  2012年   23篇
  2011年   30篇
  2010年   16篇
  2009年   18篇
  2008年   21篇
  2007年   22篇
  2006年   8篇
  2005年   10篇
  2004年   18篇
  2003年   4篇
  2002年   9篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1980年   1篇
  1977年   2篇
排序方式: 共有329条查询结果,搜索用时 828 毫秒
61.
62.
We report on the effect of BaO on the crystallization kinetics of glasses in the diopside (CaMgSi2O6)-Ca-Tschermak (CaAl2SiO6) system. Partial substitution (i.e. 5%, 10% and 20%) of Ba2+ for Ca2+ was attempted in composition CaMg0.8Al0.4Si1.8O6, in three different glasses while partial substitution of B3+ for Al3+ was made in the fourth glass. Structural investigations on the glasses have been made by density measurements, molar volume and Infra-red spectroscopy (FTIR). Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all the four glasses. The Avrami parameter for the glass powders is ∼2, indicating the existence of intermediate mechanism of crystallization. Crystallization sequence in the glasses has been followed by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and FTIR. Augite crystallized out being the dominant phase in all the glass-ceramics, while different polymorphs of BaAl2Si2O8 were present as secondary or minor phases.  相似文献   
63.
Talele HR  Sahoo S  Bedekar AV 《Organic letters》2012,14(12):3166-3169
A series of novel 1,3-oxazines were prepared to construct a helical framework. The 1,3-oxazine attached to the phenanthrene unit showed a small bite angle θ (~12°), while the units attached to [4]helicene showed a larger θ (~35°) and exhibited helical isomers at ambient conditions. The diastereomers of the third type of helicene-like bis-oxazine attached to binaphthyl were easily separable and showed good thermal stability. All four diastereomers of bis-helicene were synthesized, and their absolute configuration was established.  相似文献   
64.
Two new trinuclear hetero-metallic copper(ii)-zinc(ii) complexes [(CuL)(2)Zn(N(3))(2)] ( and ) have been synthesized using [CuL] as a so-called "metalloligand" (where H(2)L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Complexes and have the same molecular formula but crystallize in different crystal systems (triclinic for and monoclinic for ) with space group P1[combining macron] for and P2(1)/c for . is an angular trinuclear species, in which two terminal four-coordinate square planar "metalloligand" [CuL] are coordinated to a central Zn(ii) through double phenoxido bridges. The Zn(ii) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal azide ions. In complex , in addition to the double phenoxido bridge, the two terminal Cu(ii) ions are linked to the central Zn(ii) via a μ(-l,l) azido bridge giving rise to a square pyramidal environment around the Cu(ii) ions and consequently the structure becomes linear. These two species can be considered as "linear-bent" isomers. EPR spectra and ESI mass spectra show that the two isomers are identical in solution. The DFT calculation reveals that the energy of is 7.06 kcal mol(-1) higher than that of . The existence of both isomers in the solid state suggests that crystal packing interactions in are more efficient and probably compensate for the difference in energy.  相似文献   
65.
The present study describes the identification and characterization of two process impurities and major stress degradants in darifenacin hydrobromide using high performance liquid chromatography (HPLC) analysis. Forced degradation studies confirmed that the drug substance was stable under acidic, alkaline, aqueous hydrolysis, thermal and photolytic conditions and susceptible only to oxidative degradation. Impurities were identified using liquid chromatography coupled with ion trap mass spectrometry (LC-MS/MS(n)). Proposed structures were unambiguously confirmed by synthesis followed by characterization using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and elemental analysis (EA). Based on the spectroscopic, spectrometric and elemental analysis data, the unknown impurities were characterized as 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-2-oxo-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-A), 2-[1-(2-benzofuran-5-yl-ethyl)-pyrrolidin-3-yl]-2,2-diphenylacetamide (Imp-B), 2-{1-[2-(2,3-dihydrobenzofuran-5-yl)-ethyl]-1-oxy-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-C) and 2-{1-[2-(7-bromo-2,3-dihydrobenzofuran-5-yl)-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Imp-D). Plausible mechanisms for the formation and control of these impurities have also been proposed. The method was validated as per regulatory guidelines to demonstrate specificity, sensitivity, linearity, precision, accuracy and the stability-indicating nature. Regression analysis showed a correlation coefficient value greater than 0.99 for darifenacin hydrobromide and its impurities. The accuracy of the method was established based on the recovery obtained between 86.6 and 106.7% for all impurities.  相似文献   
66.
Three new Mn(II) coordination compounds {[Mn(NCNCN)(2)(azpy)]·0.5azpy}(n) (1), {[Mn(NCS)(2)(azpy)(CH(3)OH)(2)]·azpy}(n) (2), and [Mn(azpy)(2)(H(2)O)(4)][Mn(azpy)(H(2)O)(5)]·4PF(6)·H(2)O·5.5azpy (3) (where azpy = 4,4'-azobis(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif. These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest π···π and C-H···N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (1D) chains of centrosymmetric [Mn(NCS)(2)(CH (3)OH)(2)] units which form a 2D porous sheet via a CH(3)···π supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist π···π, anion···π, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.  相似文献   
67.
A series of neutral C(3)-symmetric acyclic artificial receptors incorporating amide functionality has been designed, synthesized, and fully characterized. Upon protonation, these conformationally flexible N-bridged tripodal podands 1-5 form in situ cone shape conformation through hydrogen bonding and C-H···π interactions. The protonation-induced interior preorganized cavity is capable of entrapping nitrate anions through the amide N-H bonds to form discrete nitrate complexes (1a-5a), which were fully characterized by NMR, HRESI mass spectra, and single crystal structures. By incorporating suitable fluorophores at each branch of the tripod receptor, the resulting fluorescent receptor 5 selectively recognized nitrate anions by fluorescent quenching in a DMSO solution and displayed one of the highest binding affinities for nitrate anions reported so far in polar media. Receptor 5 represents a unique example of a neutral receptor for the recognition of nitrate anions in polar solvent media by its zwitterionic form. The possible mechanism of proton-induced preorganization of these flexible, acyclic receptors in a convergent cone conformation followed by nitrate complexation has been proposed to rationalize the effective nitrate recognition.  相似文献   
68.
An unexpected product, 2-oxo-1,2-diphenylethyl benzoate (benzoyl benzoin), was isolated during the attempted Knoevenagel reaction of benzil and dimethylmalonate (or malononitrile) in the presence of potassium carbonate. The product was confirmed by spectral analysis as well as by single crystal studies and a mechanism is proposed to explain its formation.  相似文献   
69.
Optical absorption is a tool to investigate the site symmetry of metal ion and associated distortion in doped single crystals. It provides the energy of different orbital levels of metal ion and separation among them. Mn2+ ions in various single crystals and glasses have been the subject of recent investigations [1–3]. We have studied optical absorption spectra of Mn2+ doped diammonium hexaaquamagnesium(II) sulfate in order to obtain the energy level ordering using matrices of Tanabe and Sugano [4] and to discuss the associated distortion.  相似文献   
70.
Based on the linear stability and nonlinear simulations, we show that the surface instability, dynamics, and morphology of supported thin liquid films are profoundly altered by the presence of slippage on the substrate. A general dispersion equation for flow in slipping thin films is derived and simplified to identify three different regimes of slippage (weak, moderate, and strong) and obtain the length and time scales of instability in them. For illustration, the ubiquitous van der Waals interactions have been employed. Different regimes of slip-flow can be predicted based on a nondimensional parameter, xi, which is a function of slip length, film thickness, intermolecular potential, and interfacial tension. Two distinct transitions from weak to moderate slip and from moderate to strong slip occur at xiT1 approximately 0.01 and xiT2 approximately 500, respectively. More specifically, a decrease in film thickness causes transitions from weak to moderate to strong slip regime. Even a weak slippage causes faster breakup of a thin film, whereas slippage beyond a transition value (slip length, bT1) increases the length scale of instability and reduces the number density of holes compared to the nonslipping case. Strong slippage produces holes faster, and the holes are fewer in number and have less developed rims. The exponents for the length scale (lambdam infinity h0n; h0 is film thickness) and time scale of instability (tr infinity h0m) change nonmonotonically with slippage (for nonretarded van der Waals instability, n E (1.25, 2), m E (3, 6)). Retardation in van der Waals potential increases the exponents (n E (1.5, 2.5), m E (5, 8)). The initial stage of evolution of a slipping film, simulated based on nonlinear equations, follows the length scale and time scale of instability, close to the prediction of linear analysis. It is hoped that the present analysis will help in better interpretation of thin film experiments, in estimation of slippage, and in the determination of intermolecular forces from the length and time scales of the instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号