首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
化学   25篇
力学   7篇
数学   7篇
物理学   13篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有52条查询结果,搜索用时 62 毫秒
41.
We report a new approach to selectively deliver antimicrobials to the sites of bacterial infections by utilizing bacterial toxins to activate drug release from gold nanoparticle-stabilized phospholipid liposomes. The binding of chitosan-modified gold nanoparticles to the surface of liposomes can effectively prevent them from fusing with one another and from undesirable payload release in regular storage or physiological environments. However, once these protected liposomes "see" bacteria that secrete toxins, the toxins will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. Using methicillin-resistant Staphylococcus aureus (MRSA) as a model bacterium and vancomycin as a model anti-MRSA antibiotic, we demonstrate that the synthesized gold nanoparticle-stabilized liposomes can completely release the encapsulated vancomycin within 24 h in the presence of MRSA bacteria and lead to inhibition of MRSA growth as effective as an equal amount of vancomycin-loaded liposomes (without nanoparticle stabilizers) and free vancomycin. This bacterial toxin enabled drug release from nanoparticle-stabilized liposomes provides a new, safe, and effective approach for the treatment of bacterial infections. This technique can be broadly applied to treat a variety of infections caused by bacteria that secrete pore-forming toxins.  相似文献   
42.
Titanium dioxide metal oxide affinity chromatography (TiO2‐MOAC) is widely regarded as being more selective than immobilized metal‐ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO2‐MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO2‐MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non‐phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5‐dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO2‐MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO2‐MOAC showed higher specificity than immobilized gallium (Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for phosphopeptide enrichment. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS), which was more efficient for smaller, singly phosphorylated peptides. Copyright © 2009 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   
43.
Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm2 cell is 1.4 fg Pu or 2.9 × 10−20 moles Pu μm−2, which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission.  相似文献   
44.
CaC2O4真空热分解中,第一阶段生成的CO中47%歧化成CO2和C;第二阶段生成的CO与第一阶段生成的C发生气化反应,发生反应的比例随样品量增加而增大。用CaCO3标定CO后再用CaC2O4标定CO可以排除这些干扰。本文提出了一个对任意气体标定的方法。  相似文献   
45.
Particle technology continues to be a fundamental appliedresearch discipline relevant to many industrial and medical sectors which are of societal importance.  相似文献   
46.
Increased secretion of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), is often associated with adipose tissue dysregulation, which often accompanies obesity. High levels of TNFα have been linked to the development of insulin resistance in several tissues and organs, including skeletal muscle and the liver. In this study, we examined the complex regulatory roles of TNFα in murine hepatocytes utilizing a combination of global proteomic and phosphoproteomic analyses. Our results show that TNFα promotes extensive changes not only of protein levels, but also the dynamics of their downstream phosphorylation signaling. We provide evidence that TNFα induces DNA replication and promotes G1/S transition through activation of the MAPK pathway. Our data also highlight several other novel proteins, many of which are regulated by phosphorylation and play a role in the progression and development of insulin resistance in hepatocytes.  相似文献   
47.
A computational fluid dynamics (CFD) code based on the method of lines (MOL) approach was developed for the solution of transient, two-dimensional Navier-Stokes equations for incompressible separated internal flows in complex rectangular geometries. The predictive accuracy of the code was tested by applying it to the prediction of flow fields in both laminar and turbulent channel flows with and without sudden expansion, and comparing its predictions with either measured data or numerical results available in the literature. The predicted flow fields were found to be in favorable agreement with those available in the literature for laminar channel flow with sudden expansion and turbulent channel flow with Re=6600. The code was then applied to the prediction of the highly turbulent flow field in the inlet flue of a heat recovery steam generator (HRSG). The predicted flow field was found to display the same trend with the experimental findings and numerical solutions reported previously for a turbulent diverging duct. As the code uses the MOL approach in conjunction with (i) an intelligent higher-order spatial discretization scheme, (ii) a parabolic algorithm for pressure, and (iii) an elliptic grid generator using a body-fitted coordinate system for complex geometries, it provides an efficient algorithm for future direct numerical simulation (DNS) applications in complex rectangular geometries.  相似文献   
48.
黄宗军 《光子学报》1998,27(3):243-247
光学法拉第电流传感器内的反射相移能降低传感器的灵敏度与稳定性。本文对此效应给予了定量的理论分析。  相似文献   
49.
Novel lipid-polymer hybrid nanoparticles are designed with a poly(ethylene glycol) (PEG) coating that is shed in response to a low pH trigger. This allows the nanoparticles to be stable during systemic circulation and at neutral pH, but destabilize and fuse with lipid membranes in acidic environments. The hybrid nanoparticles consist of a poly(lactic-co-glycolic acid) core with a lipid and lipid-PEG monolayer shell. To make the hybrid nanoparticles pH sensitive, a lipid-(succinate)-mPEG conjugate is synthesized to provide a hydrolyzable PEG stealth layer that is shed off the particle surface at low pH. The pH-sensitivity of the nanoparticles is tunable using the molar concentration of the lipid-(succinate)-mPEG incorporated in the lipid shell of the particles. Possible uses of these pH-sensitive nanoparticles include aggregating in acidic tumor microenvironments, escaping acidified endosomes, or aggregating in deep lung tissue for improved inhalation administration.  相似文献   
50.
Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1-μm(2) areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 h in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits were always consistent with tetravalent Pu even though the intracellular milieu is generally reducing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号