首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   12篇
  国内免费   2篇
化学   317篇
晶体学   8篇
力学   14篇
数学   42篇
物理学   183篇
  2023年   6篇
  2022年   17篇
  2021年   13篇
  2020年   26篇
  2019年   16篇
  2018年   17篇
  2017年   26篇
  2016年   24篇
  2015年   11篇
  2014年   25篇
  2013年   49篇
  2012年   31篇
  2011年   41篇
  2010年   13篇
  2009年   20篇
  2008年   23篇
  2007年   25篇
  2006年   18篇
  2005年   16篇
  2004年   11篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1994年   5篇
  1993年   4篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1979年   2篇
  1978年   8篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有564条查询结果,搜索用时 250 毫秒
91.
ABSTRACT

The solid solutions of Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 have been prepared by the solid-state reaction method. The preliminary structural studies were carried out by X-ray diffraction technique showing the formation of polycrystalline sample with ABO3 type of perovskite structure with hexagonal symmetry for the Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 ceramic system at room temperature. Dielectric properties and impedance study of this ceramic have been characterized in the temperature range room temperature to 375 °C and frequency range 100 Hz–1 MHz. The maximum ferroelectric transition temperature (Tc) of this system was in the range 200 °C–260 °C with the dielectric constant of peak to be ~30,170 at 1 kHz. The complex impedance plot exhibited one impedance semicircle observed at low temperature, whereas two semicircles above 80 °C and the centres of the semicircles lie below the real axis, which indicates that the material is non-Debye type. Single semicircle is explained by the grain effect of the bulk and double semicircle is due to the bulk and grain boundary effect. The bulk resistance and grain boundary resistance of the materials decrease with the increasing temperature, showing negative temperature and a typical semiconducting property, i.e. negative temperature coefficient of resistance behaviour.  相似文献   
92.
93.
P Thakur 《Pramana》2017,88(2):27
New Sr-based Y-type nanocrystalline hexagonal ferrites with a nominal chemical composition of Sr 2Mg 2Fe 12 O 22 (Sr 2Y) were prepared by autocombustion from mixtures of Sr(NO 3) 2, Mg(NO 3) 2?6H 2O and Fe(NO 3) 3?9H 2O. The newly prepared Sr 2Y nanocrystalline particles were characterized by powder X-ray diffraction (XRD). A well crystalline phase of Sr 2Y with hexagonal crystal structure was observed. Fourier transform infrared spectroscopy (FTIR) studies revealed the information about the positions of the ions and their bonds within the lattice structure of the Sr 2Y. The chemical elements and their oxidation states in the Sr 2Y hexaferrites were determined using X-ray photoelectron spectroscopy (XPS). The XRD, FTIR and XPS studies confirmed the formation of Sr 2Mg 2Fe 12 O 22 hexaferrites. The morphology and porosity of the prepared Sr 2Y nanocrystalline Sr 2Y hexaferrite particles were studied by field emission scanning electron microscopy. The magnetic properties of Sr 2Y hexaferrites showed dependence on the methods of preparation conditions and calcination treatments. The values of coercivity, saturation magnetization and retentivity were in the range of 21.33–19.66 kA m ?1, 42.44– 38.72 emu g ?1 and 10.05–13.19 emu g ?1 respectively.  相似文献   
94.
A compact planar antenna sources with on-chip fabrication and high directivity in order to achieve large depth-of-field for better image resolution is the prospective demand for THz imaging application. Therefore, the small-gap photoconductive dipole antennas have been explored to fulfil such applications demand. However, there are certain modalities for improving the photoconductive dipole antenna performance which need to identify to accomplish high THz average radiated power and improved total efficiency. The unit-cell small-gap photoconductive dipole antenna radiation power enhancement methods need to optimize the design parameters with photoconductive material selection from theoretical simulation. Further, the potential improvement of coupling efficiency of THz wave with air as well as femto-second laser incident efficiency is also important parameters to enhance the radiation power of small-gap photoconductive dipole antenna. In this paper, we have presented an analytical procedure employing explicit mathematical expression leading to the physical behaviour of small-gap photoconductive dipole antenna. The effects of biased lines on the antenna performance parameters are discussed with the help of proposed equivalent circuit model. We have explored the effect of gap-size on the THz radiated power and on total radiation efficiency from the proposed photoconductive dipole antennas.  相似文献   
95.
96.
This paper reports the effect of proton irradiation on the electrical properties of a-As2S3 in the temperature range of 323–418 K and frequency range 0.1–100 kHz. The variation of transport property is studied with proton irradiation dose (1 × 1013 ions/cm2 and 1 × 1015 ions/cm2). It has been observed that proton irradiation changes the dc conductivity (σdc), dc activation energy (ΔEdc) and ac conductivity (σac(ω)). The σdc and σac(ω) increases with dose of proton irradiation. The value of frequency exponent (s) decreases with the temperature and irradiation dose. These results are explained in terms of change in density of defect states in these glasses.  相似文献   
97.
Wide‐bandgap semiconductor nanowires with surface defect emission centers have the potential to be used as sensitive thermometers and optical probes. Here, we show that the green luminescence of multiferroic BiFeO3 (BFO) nanowires shows an anomalous negative thermal quenching (NTQ) with increasing temperatures. The release of trapped carriers from localized surface defect states is suggested as the possible mechanism for the increased green luminescence which was experimentally observed at elevated temperatures. A reasonable interpretation of the photoluminescence (PL) processes in BFO nanowires is achieved, and the activation energies of the PL quenching and thermal hopping are deduced. Negative thermal quenching of BFO nanowires provides a new strategy for optical thermometry at higher temperatures.  相似文献   
98.
Das  Avirup  Thakur  A. K. 《Ionics》2017,23(10):2845-2853

Polymer nanocomposite has been proven to improve the property of polymer salt complex. Organo-modified clay and inorganic oxides are the most commonly used filler for polymer nanocomposite (PNC). However, single wall carbon nanotube (SWCNT)/multiwall carbon nanotube (MWCNT) are becoming popular filler for PNC for their high surface area and high mechanical stability. In this work, a series of PNC sample has been prepared by using polyethylene oxide (PEO)-polydimethylsiloxane (PDMS) blend as polymer matrix, an optimized salt stoichiometry of Ö/Li ~15, and surface-modified MWCNT as filler. The effect of ion-polymer and ion-MWCNT interaction in the polymer nanocomposite has been investigated by using XRD, SEM, FTIR, and electrical study. X-ray diffraction pattern confirms the dispersion of MWCNT inside the polymer chain and modifies the structural parameter of the polymer matrix. FTIR spectra indicate inclusion of MWCNT inside the polymer salt complex which changes the ion dissociation/association in the polymer host matrix. Further, the changes in structural, thermal, and electrical property of the polymer salt complex system have been studied by using SEM, DSC, and impedance analysis. Dc conductivity study shows that optimized PNC sample has conductivity of 8.04 × 10−5 S cm−1. This is almost two order enhancement from pure polymer salt system (10−6 S cm−1).

  相似文献   
99.
In this study, a new class of heterogeneous membranes based on cellulose acetate (CA) polymer and a complex filler clay‐silica nanowires (SiO2NWs) was investigated for potential biomedical applications. SiO2NWs were synthesized using natural clay through a facile sol–gel method and were dispersed in the polymer solution by sonication in the 1.25, 2.5, and 5% weight ratio to the CA acetate polymer. Membranes were subsequently prepared via phase inversion by precipitation of the CA polymer in water. The pristine CA membrane and SiO2NWs based nanocomposites membranes were characterized using different characterization techniques. The presence of the SiO2NWs in the CA membrane was found to significantly enhance the protein retention, water wettability and thermal as well as mechanical properties in comparison to the pristine CA membrane. Water flows studies at different temperatures and the retention of bovine serum albumin have been studied and the nanocomposite membranes were found to exhibit superior performances compared with the pristine CA membranes. SiO2NWs‐CA membranes showed a much higher stability to the water temperature change during separation than CA membranes. Morphological changes clearly revealed that the composite membrane were much more compact than the pristine CA membranes. The rabbit dermal fibroblasts cell viability in cultures after 72 hr of incubation was found to be greater than 80%. These newly synthesized composite membranes exhibit a high potential to be used for various medical applications because of their non‐cytotoxic characteristics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
100.
Rasna Thakur  N. K. Gaur 《Ionics》2014,20(1):65-71
The thermodynamic properties of alkaline earth ruthenate ARuO3 (A?=?Ca, Sr, and Ba) perovskites have been investigated for the first time by means of a modified rigid ion model at temperature 1 K?≤?T?≤?300 K. As strong electron–phonon interactions are present in these compounds, the lattice contribution to the specific heat deserves proper attention. The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. We have found that in ARuO3 (A?=?Ca, Sr, and Ba) ruthenate family, Debye temperature increases inversely with the ionic radius of the alkaline earth A cations. In addition, the results on the temperature dependence of thermal expansion coefficient (α), cohesive energy (?), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ D), and Grüneisen parameter (γ) are also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号