首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   58篇
  国内免费   1篇
化学   890篇
晶体学   16篇
力学   35篇
数学   79篇
物理学   220篇
  2023年   6篇
  2022年   19篇
  2021年   23篇
  2020年   33篇
  2019年   28篇
  2018年   30篇
  2017年   31篇
  2016年   55篇
  2015年   41篇
  2014年   57篇
  2013年   87篇
  2012年   104篇
  2011年   82篇
  2010年   46篇
  2009年   45篇
  2008年   89篇
  2007年   49篇
  2006年   49篇
  2005年   44篇
  2004年   44篇
  2003年   28篇
  2002年   34篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   12篇
  1995年   4篇
  1994年   4篇
  1991年   7篇
  1990年   7篇
  1986年   8篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   11篇
  1977年   4篇
  1969年   6篇
  1968年   6篇
  1964年   4篇
  1963年   6篇
  1962年   6篇
  1961年   12篇
  1958年   7篇
  1957年   3篇
  1955年   5篇
排序方式: 共有1240条查询结果,搜索用时 15 毫秒
41.
CaFe2O4 nanocrystalline powders were synthesized through sol–gel treatment in which the stoichiometric mixing of various nitrates involving calcium and iron in presence of citric acid was performed. Subsequently, the as prepared sample was annealed at various temperatures in order to obtain the fine distribution of size including the bulk counterpart. The samples were then characterized using powder X-ray diffraction followed by 57Fe Mössbauer spectroscopy, SQUID as well as vibrating sample magnetometry. The results of spectroanalyses revealed that the samples were formed in single phase cubic spinel structure and exhibits room temperature superparamagnetism, except the bulk one, which crystallizes in characteristic orthorhombic structure of CaFe2O4 and displays trivial coercivity and remanent magnetization at room temperature.  相似文献   
42.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
43.
Knowledge and understanding of the stability profile of a drug is important as it affects its safety and efficacy. In the present work, besifloxacin, a new, fourth‐generation fluoroquinolone antibiotic, was subjected to different forced‐degradation conditions as per International Conference on Harmonization (ICH) guidelines such as hydrolysis (acid, base and neutral), oxidation, thermal and photolysis. The drug degraded under acidic, basic, oxidative and photolytic conditions while it was found to be stable under dry heat and neutral hydrolytic conditions. In total, five degradation products (DPs) were formed under different conditions—DP1 and DP2 (photolysis), DP3 (oxidation), DP4 (acidic), DP3 and DP5 (basic). The chromatographic separation of besifloxacin and its degradation products was achieved on a Sunfire C18 (250 mm × 4.6 mm, 5 μm) column with 0.1% aqueous formic acid–acetonitrile as a mobile phase. The gradient RP‐HPLC method was developed and validated as per ICH guidelines. The degradation products were characterized with the help of LC–ESI–QTOF mass spectrometric studies and the most likely degradation pathway of the drug was proposed. In silico toxicity assessment of the drug and its degradation products was carried out, which indicated that DP3 and DP4 carry a mutagenicity alert.  相似文献   
44.
45.
Two vanadium (IV) complexes [VIVO(Haeae-sal)(MeOH)]+ ( 1 ) and [VIVO(Haeae-hyap)(MeOH)]+ ( 2 ) were prepared by reacting [VO(acac)2] with ligands [H2aeae-sal] ( I ) and [H2aeae-hyap] ( II ) respectively. Condensation of 2-(2-aminoethylamino)ethanol with salicylaldehyde and 2-hydroxyacetophenone produces the ligands ( I ) and ( II ) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid-state. Single-crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid-state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion ( TOF value of 2.739 × 102 h−1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h−1) for the oxidative bromination of salicylaldehyde where 5-bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h−1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h−1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde.  相似文献   
46.
47.
Allostatic load (AL) is a complex clinical construct, providing a unique window into the cumulative impact of stress. However, due to its inherent complexity, AL presents two major measurement challenges to conventional statistical modeling (the field's dominant methodology): it is comprised of a complex causal network of bioallostatic systems, represented by an even larger set of dynamic biomarkers; and, it is situated within a web of antecedent socioecological systems, linking AL to differences in health outcomes and disparities. To address these challenges, we employed case‐based computational modeling (CBM), which allowed us to make four advances: (1) we developed a multisystem, 7‐factor (20 biomarker) model of AL's network of allostatic systems; (2) used it to create a catalog of nine different clinical AL profiles (causal pathways); (3) linked each clinical profile to a typology of 23 health outcomes; and (4) explored our results (post hoc) as a function of gender, a key socioecological factor. In terms of highlights, (a) the Healthy clinical profile had few health risks; (b) the pro‐inflammatory profile linked to high blood pressure and diabetes; (c) Low Stress Hormones linked to heart disease, TIA/Stroke, diabetes, and circulation problems; and (d) high stress hormones linked to heart disease and high blood pressure. Post hoc analyses also found that males were overrepresented on the High Blood Pressure (61.2%), Metabolic Syndrome (63.2%), High Stress Hormones (66.4%), and High Blood Sugar (57.1%); while females were overrepresented on the Healthy (81.9%), Low Stress Hormones (66.3%), and Low Stress Antagonists (stress buffers) (95.4%) profiles. © 2015 Wiley Periodicals, Inc. Complexity 21: 291–306, 2016  相似文献   
48.
Template‐assisted formation of multicomponent Pd6 coordination prisms and formation of their self‐templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd? N/Pd? O coordination. Treatment of cis‐[Pd(en)(NO3)2] with K3tma and linear pillar 4,4′‐bpy (en=ethylenediamine, H3tma=benzene‐1,3,5‐tricarboxylic acid, 4,4′‐bpy=4,4′‐bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 ( 1 ) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma‐encapsulating non‐interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 2 ). Though the same reaction using cis‐[Pd(NO3)2(pn)] (pn=propane‐1,2‐diamine) instead of cis‐[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 ( 3 ) along with non‐interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 ( 3′ ), and the presence of H3tma as a guest gave H3tma‐encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 ( 4 ) exclusively. In solution, the amount of 3′ decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4′‐bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 ( 5 ) as the single product. Interestingly, the same reaction using slightly more bulky cis‐[Pd(NO3)2(tmen)] (tmen=N,N,N′,N′‐tetramethylethylene diamine) instead of cis‐[Pd(NO3)2(pn)] gave non‐interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 ( 6 ) exclusively. Complexes 1 , 3 , and 5 represent the first examples of template‐free triply interlocked molecular prisms obtained through multicomponent self‐assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest‐encapsulating complexes ( 2 and 4 ) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1 , 3 , 5 , and 6 single‐crystal X‐ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma‐encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.  相似文献   
49.
50.
Molecular dynamics simulations are used to study highly cross‐linked epoxy networks comprised of furanyl epoxy monomer, 2,5‐bis[(2‐oxiranylmethoxy)methyl]‐furan (BOF), that is cross‐linked by two furanyl amine hardeners, 5,5'‐methylenedifurfurylamine (DFDA) and 5,5'‐ethylidenedifurfirylamine (CH3‐DFDA). Important properties of these fully furan‐based systems, including room temperature density, glass transition temperature, and Young's modulus are found to agree with previous experimental results. We also compare the simulated and experimental values of four fully furan‐based thermosetting materials to those using the conventional resin diglycidyl ether of bisphenol A (DGEBA) cured with the two furanyl hardeners. Our simulation results predict a slight decrease in density and Young's modulus, but no impact on the glass transition temperature, upon adding the methyl group in DFDA. Detailed analyses of the MD trajectories reveal the underlying mechanisms responsible for the observed structure/property relations, which center on the lack of collinear covalent bonds in the BOF molecular structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 285–292  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号