首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   8篇
化学   83篇
数学   4篇
物理学   12篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   14篇
  2011年   13篇
  2010年   4篇
  2009年   10篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2001年   1篇
  1995年   1篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1969年   1篇
排序方式: 共有99条查询结果,搜索用时 78 毫秒
61.
Fat crystallisation in emulsions is a complex process. One of the important parameters is the solid fat content (SFC). Up to now, there is no standardised method to measure the SFC in emulsions, let alone to determine the SFC of the fat inside droplets, thus avoiding the signal of the aqueous phase. This work evaluates the capabilities of deconvolution of the free induction decay (FID)-Carr–Purcell–Meiboom–Gill (CPMG) signal of emulsions. Three models were evaluated. The first model was a combination of a Gaussian function and a bi-exponential function (GBE model). The second model combined a Gaussian function with multiple exponential functions (GME model). The last model contained multiple Gaussian functions and multiple exponential functions (MGME model). The latter two models used a simplified CONTIN analysis. Based on the analysis of the determination coefficient R2, the calculated water content and the estimated SFC of nonemulsified two-phase systems, the GBE model was selected to analyse the FID-CPMG signal of emulsified systems. However, the results obtained with the other models did not differ substantially, and hence, they could be used to obtain a full relaxation time distribution. When the GBE model was applied on different emulsion systems, no significant differences in estimated SFC of the fat phase were found, thus indicating that the emulsion formulation (i.e. water-in-oil [W/O], oil-in-water [O/W] or water-in-oil-in-water [W/O/W]) only had a minor effect on the SFC in the systems considered here.  相似文献   
62.
Support vector machines (SVMs) belong to the class of modern statistical machine learning techniques and can be described as M-estimators with a Hilbert norm regularization term for functions. SVMs are consistent and robust for classification and regression purposes if based on a Lipschitz continuous loss and a bounded continuous kernel with a dense reproducing kernel Hilbert space. For regression, one of the conditions used is that the output variable Y has a finite first absolute moment. This assumption, however, excludes heavy-tailed distributions. Recently, the applicability of SVMs was enlarged to these distributions by considering shifted loss functions. In this review paper, we briefly describe the approach of SVMs based on shifted loss functions and list some properties of such SVMs. Then, we prove that SVMs based on a bounded continuous kernel and on a convex and Lipschitz continuous, but not necessarily differentiable, shifted loss function have a bounded Bouligand influence function for all distributions, even for heavy-tailed distributions including extreme value distributions and Cauchy distributions. SVMs are thus robust in this sense. Our result covers the important loss functions ${\epsilon}$ -insensitive for regression and pinball for quantile regression, which were not covered by earlier results on the influence function. We demonstrate the usefulness of SVMs even for heavy-tailed distributions by applying SVMs to a simulated data set with Cauchy errors and to a data set of large fire insurance claims of Copenhagen Re.  相似文献   
63.
A procedure to obtain hollow colloidal particles has been developed using an emulsion templating technique. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysilane monomer and incorporated in a solid shell using tetraethoxysilane. Hollow shells were obtained by exchange of the core. The formation of the oil droplets was investigated using static light scattering and 29Si solution NMR, and the hollow shells were characterized by electron microscopy and static light scattering. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis and 29Si solid state NMR, revealing that the shells consist of a hybrid cross-linked network of silica and siloxane units. Confocal microscopy was used to show that the shells are permeable to small dye molecules. The thickness of the coating can be easily varied from a few nanometers upward. Depending on the ratio of shell thickness to particle radius, three types of hollow shells can be distinguished depending on the way in which they buckle upon drying. We designate them as microspheres, microcapsules, and microballoons. As a result of their monodispersity, these particles can be used for making 3D-ordered materials.  相似文献   
64.
The Trp RNA-binding protein (TRAP) has a toroidal topology and a perfect 11-fold symmetry, which makes it an excellent candidate for a vibrational study of elastic properties. Normal mode analysis in combination with correlation matrix calculations was used to detect collective low-frequency motions in TRAP. The results reveal the presence of highly correlated modes at the lower end of the spectrum, which directly reflect the annular and toroidal topology. The integral of the correlations over the low-frequency torsional part of the vibrational spectrum further demonstrates the relative rigidity of the 11 monomer building blocks of TRAP. The internal flexibility of each monomer and the effects of Trp-binding were also examined. The study clearly shows the determining influence of symmetry and topology on the elastic properties and also offers a detailed view on the Trp affinity of TRAP.  相似文献   
65.
66.
The stereochemistry of hydrazides makes them especially interesting as building blocks for molecular design. An exhaustive conformational analysis of three model hydrazides was conducted in a conformer‐selective approach by using a combination of high‐level quantum chemistry calculations and vibrational spectroscopy in the gas phase and in solution. The NH stretch frequency was found to be highly sensitive to hyperconjugation, thus making it an efficient probe of the conformation of the neighboring nitrogen atom. This property greatly assisted the identification of the isomers observed experimentally in the conformer pool. A rationalization of the hydrazide conformational landscape is proposed, therefore paving the way for a better characterization of secondary structures in larger systems.  相似文献   
67.
The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.  相似文献   
68.
We have engineered a metal‐binding site into the novel artificial β‐propeller protein Pizza. This new Pizza variant carries two nearly identical domains per polypeptide chain, and forms a trimer with three‐fold symmetry. The designed single metal ion binding site lies on the symmetry axis, bonding the trimer together. Two copies of the trimer associate in the presence of cadmium chloride in solution, and very high‐resolution X‐ray crystallographic analysis reveals a nanocrystal of cadmium chloride, sandwiched between two trimers of the protein. This nanocrystal, containing seven cadmium ions lying in a plane and twelve interspersed chloride ions, is the smallest reported to date. Our results indicate the feasibility of using rationally designed symmetrical proteins to biomineralize nanocrystals with useful properties.  相似文献   
69.
Anisotropic and binary colloids self‐assemble into a variety of novel supracolloidal structures within the thermo‐switchable confinement of molecular microtubes, achieving structuring at multiple length scales and dimensionalities. The multistage self‐assembly strategy involving hard colloidal particles and a soft supramolecular template is generic for colloids with different geometries and materials as well as their binary mixtures. The colloidal architectures can be controlled by colloid shape, size, and concentration. Colloidal cubes align in chains with face‐to‐face arrangement, whereas rod‐like colloids predominantly self‐organize in end‐to‐end configurations with their long axis parallel with the long axis of the microtubes. The 1D microconfinement imposed on binary mixtures of anisotropic and isotropic colloids further increases the diversity of colloid‐in‐tube structures. In cube–sphere mixtures, cubes may act as additional confiners, locking in colloidal sphere chains, while a “colloidal Morse code” is generated where rods and spheres alternate in the case of rod–sphere mixtures. The versatile confined colloidal superstructures including their thermoresponsive assembly and disassembly are relevant for the development of stimulus–responsive materials where controlled release and encapsulation are desired.  相似文献   
70.
We describe an optimized algorithm for finding all symmetry-distinct maps of a given graph. It contains significant improvements on the computing time by representing the maps as linear codes. In this way, the time consuming step of removing equivalent maps can be solved more efficiently by searching for a “minimal code”. As an example we apply the algorithm to the 32-vertex Dyck-graph for which more than 4 billion cases should be investigated. One of its most symmetrical maps forms an interesting blueprint for a hypothetical negatively curved carbon allotrope of genus 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号