首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   18篇
  国内免费   8篇
化学   397篇
晶体学   4篇
力学   5篇
数学   79篇
物理学   146篇
  2021年   8篇
  2020年   8篇
  2017年   3篇
  2016年   19篇
  2015年   9篇
  2014年   16篇
  2013年   24篇
  2012年   29篇
  2011年   41篇
  2010年   14篇
  2009年   14篇
  2008年   20篇
  2007年   30篇
  2006年   36篇
  2005年   29篇
  2004年   24篇
  2003年   21篇
  2002年   29篇
  2001年   11篇
  2000年   14篇
  1999年   12篇
  1998年   9篇
  1997年   18篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   14篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1978年   4篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1957年   4篇
  1956年   7篇
  1955年   5篇
  1926年   3篇
排序方式: 共有631条查询结果,搜索用时 31 毫秒
61.
The role of extra-framework and framework aluminium in wet-ion exchanged Fe-ZSM5 has been studied using 29Si NMR and 27Al triple quantum magic angle spinning (3QMAS) NMR. A series of samples were studied, the parent material, the wet ion exchanged Fe-ZSM5 and Fe-ZSM5 that has been used in the decomposition of N2O with varying reaction conditions. Various framework and extra-framework aluminium species have been identified. It was found that cationic Fe species prefer to replace the Brønsted acid protons in their charge balancing role at those aluminium sites associated with the largest quadrupolar product. The framework aluminium atoms that pertain to the smaller quadrupolar product, which are either charge balanced by extra-framework aluminium or a proton, are much less prone to exchange. In the catalytic decomposition of N2O it seemed that water present in small amounts enhances the catalytic activity. However, water also decreases the long term stability and performance by dealuminating the zeolite framework. With a high amount of water present, Fe-ZSM5 was destabilised and catalytically inferior.  相似文献   
62.
63.
64.
65.
66.
67.
68.
Li17Sb13S28 was synthesized by solid‐state reaction of stoichiometric amounts of anhydrous Li2S and Sb2S3. The crystal structure of Li17Sb13S28 was determined from dark‐red single crystals at room temperature. The title compound crystallizes in the monoclinic space group C2/m (no. 12) with a=12.765(2) Å, b=11.6195(8) Å, c=9.2564(9) Å, β=119.665(6)°, V=1193.0(2) Å3, and Z=4 (data at 20 °C, lattice constants from powder diffraction). The crystal structure contains one cation site with a mixed occupation by Li and Sb, and one with an antimony split position. Antimony and sulfur form slightly distorted tetragonal bipyramidal [SbS5E] units (E=free electron pair). Six of these units are arranged around a vacancy in the anion substructure. The lone electron pairs E of the antimony(III) cations are arranged around these vacancies. Thus, a variant of the rock salt structure type with ordered vacancies in the anionic substructure results. Impedance spectroscopic measurements of Li17Sb13S28 show a specific conductivity of 2.9×10?9 Ω?1 cm?1 at 323 K and of 7.9×10?6 Ω?1 cm?1 at 563 K, the corresponding activation energy is EA=0.4 eV below 403 K and EA=0.6 eV above. Raman spectra are dominated by the Sb?S stretching modes of the [SbS5] units at 315 and 341 cm?1 at room temperature. Differential thermal analysis (DTA) measurements of Li17Sb13S28 indicate peritectic melting at 854 K.  相似文献   
69.
(1)H and variable-temperature (15)N NMR techniques have been used to study the effect of the gradual alumination of SBA-15 on the structure and adsorption properties of this mesoporous material. The interpretation of experimental spectra suggests that aluminum chlorhydrol most effectively reacts with silica surfaces in the confinement of the cavities of rough mesopore walls, instead of forming a homogeneous aluminum film. This first leads to a gradual filling of the cavities and finally results in aluminum islands on the inner surfaces of mesopores. In the sample with a Si/Al atomic ratio of 4.1, up to half of the inner surface area of the mesopores is covered with aluminum. The alumination produces Br?nsted acid sites attributed to silanol groups interacting with aluminum but does not affect the proton-donating ability of isolated silanol groups. At high Si/Al ratios, the surface contains only one type of Lewis site attributed to tetracoordinated aluminum. At lower Si/Al ratios, Lewis acid sites with a lower electron-accepting ability appear, as attributed to pentacoordinated aluminum. The numerical values of the surface densities of all chemically active sites have been estimated after annealing at 420 and 700 K. We were surprised to observe that gaseous nitrogen can occupy Lewis acid sites and hinder the interaction of the aluminum with any other electron donor. As a result, aluminated surfaces saturated with nitrogen do not exhibit any Br?nsted or Lewis acidity. At room temperature, it takes days before pyridine replaces nitrogen at the Lewis acid sites.  相似文献   
70.
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号