首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   11篇
化学   145篇
力学   7篇
数学   31篇
物理学   58篇
  2023年   9篇
  2022年   5篇
  2021年   10篇
  2020年   9篇
  2019年   10篇
  2018年   12篇
  2017年   5篇
  2016年   21篇
  2015年   3篇
  2014年   12篇
  2013年   15篇
  2012年   24篇
  2011年   26篇
  2010年   13篇
  2009年   5篇
  2008年   11篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   10篇
  2001年   5篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
231.
232.
In the title compound, C13H22O3, the asymmetric unit has two independent mol­ecules linked by a strong O—H?O hydrogen bond. The cyclo­hexane ring is trans fused to the cyclo­pentane ring bridged through an ethyl moiety. The hydroxyl groups act as donors as well as acceptors, resulting in an extensive two‐dimensional hydrogen‐bonded network in the (011) plane. Intermolecular O—H?O bonds between centrosymmetrically related mol­ecules form a four‐membered supramolecular assembly, leading to infinite chains parallel to the [01] direction, crosslinked in the [100] direction.  相似文献   
233.
The folding of an extended protein to its unique native state requires establishment of specific, predetermined, often distant, contacts between amino acid residue pairs. The dynamics of contact pair formation between various hydrophobic residues during folding of two different small proteins, the chicken villin head piece (HP-36) and the Alzheimer protein beta-amyloid (betaA-40), are investigated by Brownian dynamics (BD) simulations. These two proteins represent two very different classes-HP-36 being globular while betaA-40 is nonglobular, stringlike. Hydropathy scale and nonlocal helix propensity of amino acids are used to model the complex interaction potential among the various amino acid residues. The minimalistic model we use here employs a connected backbone chain of atoms of equal size while an amino acid is attached to each backbone atom as an additional atom of differing sizes and interaction parameters, determined by the characteristics of each amino acid. Even for such simple models, we find that the low-energy structures obtained by BD simulations of both the model proteins mimic the native state of the real protein rather well, with a best root-mean-square deviation of 4.5 A for HP-36. For betaA-40 (where a single well-defined structure is not available), the simulated structures resemble the reported ensemble rather well, with the well-known beta-bend correctly reproduced. We introduce and calculate a contact pair distance time correlation function, C(P) (ij)(t), to quantify the dynamical evolution of the pair contact formation between the amino acid residue pairs i and j. The contact pair time correlation function exhibits multistage dynamics, including a two stage fast collapse, followed by a slow (microsecond long) late stage dynamics for several specific pairs. The slow late stage dynamics is in accordance with the findings of Sali et al. Analysis of the individual trajectories shows that the slow decay is due to the attempt of the protein to form energetically more favorable pair contacts to replace the less favorable ones. This late stage contact formation is a highly cooperative process, involving participation of several pairs and thus entropically unfavorable and expected to face a large free energy barrier. This is because any new pair contact formation among hydrophobic pairs will require breaking of several contacts, before the favorable ones can be formed. This aspect of protein folding dynamics is similar to relaxation in glassy liquids, where also alpha relaxation requires highly cooperative process of hopping. The present analysis suggests that waiting time for the necessary pair contact formation may obey the Poissonian distribution. We also study the dynamics of Forster energy transfer during folding between two tagged amino acid pairs. This dynamics can be studied by fluorescence resonance energy transfer (FRET). It is found that suitably placed donor-acceptor pairs can capture the slow dynamics during folding. The dynamics probed by FRET is predicted to be nonexponential.  相似文献   
234.
235.
The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods. The approach is illustrated with a mixture of terpene molecules and a benchtop NMR spectrometer, paving the way to a sensitive, information-rich and affordable analytical method.  相似文献   
236.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   
237.
The catalyst‐free regioselective [3+2]‐cycloaddition of α,β‐unsaturated N‐arylnitrones with alkenes are developed. The series of synthetically important functionalized isoxazolidines are prepared in good to excellent yields by step economic pathway under ligand and transition‐metal‐free conditions. The regioselective cycloaddition pathway supported by control experiment and computational study.  相似文献   
238.
The helix-forming nature of β-1,3-glucan polysaccharides is a characteristic that has potential for producing gene carriers, bio-nanomaterials and other chiral nanowires. Herein, carboxylic curdlan (CurCOOH) bearing the β-1,3-polyglucuronic acid structure was successfully prepared from β-1,3-glucan polysaccharide curdlan (Cur) by one-step oxidation using a 4-acetamido-TEMPO/NaClO/NaClO(2) system as the oxidant. The resulting high-molecular-weight CurCOOH was proved to bear the 6-COOH group in 100% purity. The optical rotatory dispersion (ORD) spectra indicated that the obtained CurCOOH behaves as a water-soluble single-strand in various pH aqueous media. This advantage has allowed us to use CurCOOH as a polymeric host to form various macromolecular complexes. For example, complexation of CurCOOH with single-walled carbon nanotubes (SWNTs) resulted in a water-soluble one-dimensional architecture, which formed a dispersion in aqueous solution that was stable for several months, and much more stable than SWNTs complexes of the similar negatively-charged polyacrylic acid (PAA) and polymethacrylic acid (PMAA). It was shown that in the complex, SWNTs are effectively wrapped by a small amount of CurCOOH, enabling them to avoid electrostatic repulsion. This pH-responsive CurCOOH formed a very stable complex with cationic water-soluble polythiophenes (PT-1), which was stabilized not only by the hydrophobic interaction but also by the electrostatic attraction between trimethylammonium cations in PT-1 and dissociated anionic COO(-) groups in CurCOOH. The included PT-1 became CD-active only in the neutral to basic pH region, and the positive Cotton effect suggested that the conjugated main chain is twisted in the right-handed direction. We also found that CurCOOH can interact with polycytidylic acid (poly(C)) only under high NaCl concentrations, the binding and release of which could be controlled by a change in the salt concentration. We believe, therefore, that CurCOOH bearing a dissociable COOH group can act as a new potential polymeric host to construct novel polymeric complexes applicable for gene carriers, biosensors, chiral polymer assemblies, etc.  相似文献   
239.
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号