首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5145篇
  免费   133篇
  国内免费   7篇
化学   3277篇
晶体学   102篇
力学   126篇
数学   609篇
物理学   1171篇
  2021年   47篇
  2020年   68篇
  2019年   62篇
  2017年   41篇
  2016年   99篇
  2015年   98篇
  2014年   106篇
  2013年   161篇
  2012年   174篇
  2011年   249篇
  2010年   150篇
  2009年   145篇
  2008年   177篇
  2007年   169篇
  2006年   192篇
  2005年   161篇
  2004年   158篇
  2003年   149篇
  2002年   139篇
  2001年   98篇
  2000年   114篇
  1999年   85篇
  1998年   67篇
  1997年   72篇
  1996年   82篇
  1995年   77篇
  1994年   72篇
  1993年   69篇
  1992年   75篇
  1991年   66篇
  1990年   61篇
  1989年   69篇
  1988年   67篇
  1987年   73篇
  1986年   67篇
  1985年   66篇
  1984年   57篇
  1983年   56篇
  1982年   57篇
  1981年   73篇
  1980年   69篇
  1979年   76篇
  1978年   84篇
  1977年   66篇
  1976年   68篇
  1975年   59篇
  1974年   68篇
  1973年   71篇
  1972年   46篇
  1970年   39篇
排序方式: 共有5285条查询结果,搜索用时 46 毫秒
101.
Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

Controlled protein functionalization holds great promise for a wide variety of applications.

Applications of protein conjugates are limitless, including imaging, diagnostics, drug delivery, and sensing.1–4 In many of these applications, it is crucial that the conjugates are homogeneous.5 The site-selectivity of the conjugation process and the number of functional labels per biomolecule, known as the degree of conjugation (DoC), are crucial parameters that define the composition of the obtained products and are often the limiting factors to achieving adequate performance of the conjugates. For instance, immuno-PCR, an extremely sensitive detection technique, requires rigorous control of the average number of oligonucleotide labels per biomolecule (its DoC) in order to achieve high sensitivity.6 In optical imaging, the performance of many super-resolution microscopy techniques is directly defined by the DoC of fluorescent tags.7 For therapeutics, an even more striking example is provided by antibody–drug conjugates, which are prescribed for the treatment of an increasing range of cancer indications.8 A growing body of evidence from clinical trials indicates that bioconjugation parameters, DoC and DoC distribution, directly influence the therapeutic index of these targeted agents and hence must be tightly controlled.9Standard bioconjugation techniques, which rely on nucleophile–electrophile reactions, result in a broad distribution of different DoC species (Fig. 1a), which have different biophysical parameters, and consequently different functional properties.10Open in a separate windowFig. 1Schematic representation of the types of protein conjugates.To address this key issue and achieve better DoC selectivity, a number of site-specific conjugation approaches have been developed (Fig. 1b). These techniques rely on protein engineering for the introduction of specific motifs (e.g., free cysteines,11 selenocysteines,12 non-natural amino acids,13,14 peptide tags recognized by specific enzymes15,16) with distinct reactivity compared to the reactivity of the amino acids present in the native protein. These motifs are used to simultaneously control the DoC (via chemo-selective reactions) and the site of payload attachment. Both parameters are known to influence the biological and biophysical parameters of the conjugates,11 but so far there has been no way of evaluating their impact separately.The influence of DoC is more straightforward, with a lower DoC allowing the minimization of the influence of payload conjugation on the properties of the protein substrate. The lowest DoC that can be achieved for an individual conjugate is 1 (corresponding to one payload attached per biomolecule). It is noteworthy that DoC 1 is often difficult to achieve through site-specific conjugation techniques due to the symmetry of many protein substrates (e.g., antibodies). Site selection is a more intricate process, which usually relies on a systematic screening of conjugation sites for some specific criteria, such as stability or reactivity.17Herein, we introduce a method of accessing an entirely new class of protein conjugates with multiple conjugation sites but strictly homogenous DoCs (Fig. 1c). To achieve this, we combined (a) iterative low conversion chemical modification, (b) process automation, and (c) bioorthogonal trans-tagging in one workflow.The method has been exemplified for protein substrates, but it is applicable to virtually any native bio-macromolecule and payload. Importantly, this method allows for the first time the disentangling of the effects of homogeneous DoC and site-specificity on conjugate properties, which is especially intriguing in the light of recent publications revealing the complexity of the interplay between payload conjugation sites and DoC for in vivo efficacy of therapeutic bioconjugates.18 Finally, it is noteworthy that this method can be readily combined with an emerging class of site-selective bioconjugation reagents to produce site-specific DoC 1 conjugates, thus further expanding their potential for biotechnology applications.19  相似文献   
102.
[Reaction: see text]. Sanglifehrin A is a novel complex natural product showing strong immunosuppressive activity and remarkably high affinity for cyclophilin A. To assess its pharmacokinetic properties in vivo, an efficient synthetic route was developed to introduce a tritium label in position C35 of sangliferin A via an oxidation/reduction strategy. The synthetic approach is particularly attractive, because the C35-oxo intermediate 7 is available in good yield on large scale and the reducing agent, lithium tri-sec-butylborotritide, is readily available. An attempt to apply a similar strategy to the alcohol in position C31 led primarily to C31-epi-hydroxy sanglifehrin A under a variety of conditions.  相似文献   
103.
To obtain further information concerning the interaction between Walsh-orbitols of ‘conjugated’ cyclopropane rings, the photoelectron spectra of the following compounds have been recorded: bicyclo[4.1.0]heptane 1 , cis- and trans-tricyclo[5.1.03, 5]octane 2, 3 , diademane 4 , trans-pentacyclo[3.3.2.02, 9.04, 10, 06, 8]decan 5 and bicyclo[4.1.0]heptene-2 6 . The first bands in the PE.-spectra of these compounds have been assigned on the basis of a ZDO HMO-approximation. For 2 and 4 the value for resonance integral between linked 2p atomic orbitals of two adjacent eclipsed cyclopropane rings is found to be ?1.73 eV.  相似文献   
104.
105.
106.
We analyze the Schrödinger equation , whereH() is the hamiltonian of the molecular system consisting of nuclei with masses proportional to –4 and electrons with masses of order 1. Using the Born-Oppenheimer method we construct the leading order asymptotic expansion to the exact solutions of the equation. We show that if the particles interact through smooth potentials decaying suitably as the distance between particles tends to , then the expansion holds uniformly for all timest[0,). By similar analysis one can show validity of the expansion fort(–,0], thus our results hold for scattering theory.The material in this paper is contained in a dissertation submitted to the faculty of VPI & SU in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号