首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   25篇
  国内免费   1篇
化学   1153篇
晶体学   5篇
力学   7篇
数学   184篇
物理学   117篇
  2021年   19篇
  2020年   14篇
  2019年   23篇
  2017年   14篇
  2016年   24篇
  2015年   29篇
  2014年   35篇
  2013年   36篇
  2012年   45篇
  2011年   61篇
  2010年   42篇
  2009年   38篇
  2008年   39篇
  2007年   45篇
  2006年   52篇
  2005年   45篇
  2004年   42篇
  2003年   43篇
  2002年   49篇
  2001年   25篇
  2000年   24篇
  1999年   30篇
  1998年   21篇
  1997年   23篇
  1996年   21篇
  1995年   25篇
  1994年   26篇
  1993年   13篇
  1992年   23篇
  1991年   19篇
  1990年   15篇
  1989年   17篇
  1988年   12篇
  1987年   19篇
  1986年   20篇
  1985年   25篇
  1984年   30篇
  1982年   23篇
  1981年   15篇
  1980年   28篇
  1979年   23篇
  1978年   25篇
  1977年   23篇
  1976年   24篇
  1975年   29篇
  1974年   35篇
  1973年   34篇
  1972年   25篇
  1971年   11篇
  1970年   14篇
排序方式: 共有1466条查询结果,搜索用时 15 毫秒
41.
42.
The arguments of Malatesta (J Solution Chem 29:771–779, 2000; Fluid Phase Equil 295:244–248, 2010) exclude the experimental determination of individual ion activity coefficients. I agree that a measurement of single-ion activity coefficients is impossible. But the comment of Malatesta (J Solid State Electrochem (in press), 2011) in the connection with the purely mathematical procedure developed by Ferse and Müller (J Solid State Electrochem (in press), 2011) is senseless because there is no new aspect which is not also given in the paper of Ferse and Müller (J Solid State Electrochem (in press), 2011). All of the mentioned problems are already discussed and clarified in the publication by Ferse and Müller (J Solid State Electrochem (in press), 2011). The purely mathematical method is a possibility to obtain the concentration functions for the individual activity coefficients of the complementary ion species by factorizing a product function of the experimentally accessible concentration dependence of the mean activity coefficients to the required power.  相似文献   
43.
Comprehensive understanding of the mechanism of two-phase flow agitation is essential to control the mixing performance in chemical processes. The aim of the present study is to understand mixing behavior of two phase flow emulsification process in details by utilizing a three-dimensional computational fluid dynamics (CFD) scheme and predicting the flow characteristics of O/W emulsion in a Kenics static mixer (KSM) operating as an in line continuous homogenizer. The overall study is carried out in three steps: (a) a turbulent flow analysis, to obtain an overall characteristic of the emulsion resulting in CFD model and (b) comparing theoretical data of model with those of experimental studies in order to validate the CFD approach; (c) a droplet tracking step, to extensively study the distribution of marked droplets during the mixing procedure. To achieve this goal, the individual droplets being numerically labeled and visually colored regarding their droplet size; a quantitatively scrutiny of mixing for the droplet distribution was introduced. As a result, the droplet tracking using CFD has successfully evaluated the mixing performance and is proposed as a practical numerical scheme for predicting the KSM behavior.  相似文献   
44.
Simulations of three different 3-bed 3-step pressure swing adsorption (PSA) cycles were carried out to study the enrichment and recovery of 14CO from an isotopic mixture of 14CO, 13CO and 12CO using NaX zeolite. Each PSA cycle included feed pressurization/feed (FP/P), heavy reflux (HR) and countercurrent depressurization (CnD) steps; they differed only in the way the CnD step was carried out: PSA Cycle I was carried out under total reflux (i.e., with no 14CO heavy product production); PSA Cycle II was carried out with discontinuous 14CO heavy product production; and PSA Cycle III was carried out with continuous 14CO heavy product production. The effects of the CnD step valve coefficient (c v ), heavy reflux ratio (R R ), and cycle time (t cyc ) on the PSA process performance were determined in terms of the 14CO enrichment, 14CO recovery and CO feed throughput. The results showed that there was essentially no limit to the extent of the 14CO enrichment, despite the inherently low 14CO/12CO (1.05) and 14CO/13CO (1.12) separation factors for these isotopes on NaX zeolite. Under total reflux an optimum c v was found for the CnD step and 14CO enrichments as high as 152 were obtained. Using the optimum c v under finite reflux, a 14CO enrichment approaching 20 and a 14CO recovery approaching 100 % were easily achieved with discontinuous (PSA Cycle II) or continuous (PSA Cycle III) 14CO heavy product production. There was essentially no difference in the performance of PSA Cycles II and III, a counterintuitive result. The 14CO enrichment and the 14CO recovery both increased with decreasing CO feed throughputs and higher R R , which were always very close to unity.  相似文献   
45.
To combine good chemical stability and high oxygen permeability, a mixed ionic‐electronic conducting (MIEC) 75 wt % Ce0.85Gd0.1Cu0.05O2?δ‐25 wt % La0.6Ca0.4FeO3?δ (CGCO‐LCF) dual‐phase membrane based on a MIEC–MIEC composite has been developed. Copper doping into Ce0.9Gd0.1O2?δ (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2–10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO‐LCF one‐pot dual‐phase membrane. A high oxygen permeation flux of 0.70 mL min?1 cm?2 is obtained by the CGCO‐LCF one‐pot dual‐phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long‐term operation.  相似文献   
46.
The single ion activity coefficients of hydrogen and chloride ions in aqueous HCl solutions have been estimated at 25°C at concentrations up to 1 mol-kg–1, using potentiometric measurements with ion-selective electrodes and appropriate calibration procedures. Two methods are described for an internal calibration of the electrodes in the extended Debye–Hückel concentration range. The results are compared to the conventional pH calibration with external buffer solutions. Since the latter calibration method does not account for the liquid junction potential E J which arises at the reference electrode, the resulting activity coefficients are quite different in HCl solutions of higher concentration. These differences between internal and external calibration decrease significantly, when a correction for E J is introduced into the conventional pH calibration. Hence, in solutions of higher ionic strength the accuracy of the conventional pH electrode calibration using buffer solutions is very limited, when exact H+ activities are required. The consistency of the results indicates that the liquid junction potentials in the examined systems calculated by the Henderson/Bates approximation are of reasonable precision.  相似文献   
47.
A liquid chromatographic/mass spectrometric assay with atmospheric pressure chemical ionization (LC/APCI-MS) is presented for fast and reliable screening and identification and also for precise and sensitive quantification in plasma of the 23 benzodiazepines alprazolam, bromazepam, brotizolam, camazepam, chlordiazepoxide, clobazam, clonazepam, diazepam, flunitrazepam, flurazepam, desalkylflurazepam, lorazepam, lormetazepam, medazepam, metaclazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, temazepam and tetrazepam, triazolam, their antagonist flumazenil and the benzodiazepine BZ1 (omega 1) receptor agonists zaleplone, zolpidem and zopiclone. It allows confirmation of the diagnosis of an overdose situation and monitoring of psychiatric patients' compliance. The analytes were isolated from plasma using liquid-liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. After screening and identification in the scan mode using the authors' LC/MS library, the analytes were quantified in the selected-ion monitoring mode. The quantification assay was fully validated. It was found to be selective proved to be linear from sub-therapeutic to over therapeutic concentrations for all analytes, except bromazepam. The corresponding reference levels the assay's accuracy and precision data for all studied substances are listed. The accuracy and precision data were within the required limits with the exception of those for bromazepam. The analytes were stable in frozen plasma for at least 1 month. The validated assay was successfully applied to several authentic plasma samples from patients treated or intoxicated with various benzodiazepines or with zaleplone, zolpidem or zopiclone. It has proven to be appropriate for the isolation, separation, screening, identification and quantification of the drugs mentioned above in plasma for clinical toxicology, e.g. in cases of poisoning, and forensic toxicology, e.g. in cases of driving under the influence of drugs.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号