首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   15篇
  国内免费   1篇
化学   168篇
晶体学   4篇
力学   4篇
数学   44篇
物理学   87篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   9篇
  2016年   18篇
  2015年   9篇
  2014年   7篇
  2013年   22篇
  2012年   22篇
  2011年   14篇
  2010年   8篇
  2009年   16篇
  2008年   15篇
  2007年   12篇
  2006年   20篇
  2005年   9篇
  2004年   10篇
  2003年   13篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1967年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
51.
The Galilean invariance of the Navier–Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi–Rouet–Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier–Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.  相似文献   
52.
Arjun Berera 《Pramana》2009,72(1):169-182
This talk presents some recent work that has been done in inflationary cosmology. First a brief review is given of the inflation scenario and its basic models. After that, one of the main problems in developing inflationary models has been the requirement of a very flat inflation potential. In solving this problem, supersymmetry has played a major role, and the reasons will be discussed and a specific example of the SUSY hybrid model will be examined. Some problems introduced by SUSY such as the η and gravitino problems will then be discussed. Then in a different direction, the quintessential inflation model will be examined as a proposal where a single scalar field plays the role of both the inflaton at early time and the dark energy field later. The final topic covered is developments in understanding dissipation and particle production processes during the inflationary phase.   相似文献   
53.
l-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert l-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for l-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand l-arabinose transport and use in yeasts and to identify a source for efficient l-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of l-arabinose. Initial transport rates of l-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.  相似文献   
54.
55.
56.
在乳腺癌成像、大脑的功能激活及临床研究、癌症治疗监测和肌肉疾病的研究等各种医疗解决方案中,功能性扩散光学成像和组织的光谱学技术逐渐成为一种重要的诊断方法。在简要介绍扩散光学的概念后,回顾了实验室多项近期的临床研究,特别是那些针对乳腺癌和脑功能的研究。乳腺癌研究的核心在于试点性的临床试验,目前已经进展到了对扩散光的定量评估,以用于肿瘤的检测和表征,也有助于癌症治疗检测等衍生问题的解决。扩散光学方法的第二个重要应用是在脑功能和生理学研究领域,这个领域中,组织氧消耗、维管联结和调节效应之间的相互作用甚少为人所知。这一方法在脑研究中的应用将会以多个示例介绍,包括临床上对急性缺血性脑卒中病人的看护等。  相似文献   
57.
The nacreous layer in seashells is known for two phenomenal aspects: light-weightiness and superior fracture toughness. Of a multitude of toughening mechanisms, the highly meandering nature of the crack path through its staggered architecture has been reported to contribute approximately a third of its overall toughness. In the current article, we are trying to establish the scientific rationale associated with the influence of overlap length on the crack-tip driving force from a local perspective via development of a simplified analytical model. Characteristic overlap lengths computed showed reasonable agreement with the values reported in the nacreous layer and previously published experimental data. Biomimetic design guideline obtained from the current investigation would thereby lead to development of synthetic staggered architecture materials with improved stiffness, load-transfer and toughness.  相似文献   
58.
In all contact-related applications such as the wear-resistant inserts, biomedical implants, high strain rate impact-resistant plates, etc., nanohardness, i.e. the intrinsic contact resistance at the nano scale, plays a major role. In spite of the wealth of literature, the studies on nanohardness of dense, coarse-grain alumina ceramics which represent many commercial varieties; have reasonably good hardness at the macro scale and characteristically exhibit R-curve behaviour, are far from significant. Here, to the best of our knowledge, we report for the first time the experimental observations of the increase in intrinsic contact resistance at the nano scale with the loading rate applied to a high-density (~95?% of theoretical) coarse-grain (~20?μm) alumina ceramics. These observations were explained in terms of the initiation of nanoscale plasticity and maximum shear stress generated just underneath the nanoindenter.  相似文献   
59.
Penicillium funiculosum NCL1, a filamentous fungus, produced significantly higher levels of ??-glucosidase. The effect of initial pH, incubation temperature, and different carbon sources on extracellular ??-glucosidase production was studied in submerged fermentation. At 30?°C with initial pH 5.0, enzyme production was increased by 48-fold upon induction with paper mill waste, as compared to commercial cellulose powder. In zymogram analysis, four isoforms of ??-glucosidases were observed with wheat bran whereas a minimum of one isoform was observed with other carbon sources. A major ??-glucosidase (Bgl3A) with the apparent molecular weight of ~120?kDa, induced by paper mill waste, was purified 19-fold to homogeneity, with a specific activity of 1,796 U/mg. Bgl3A was a monomeric glycoprotein with 29% of neutral carbohydrate content. It showed optimum activity at pH 4.0 and 5.0, optimum temperature at 60?°C, and exhibited a half-life of 1?h at 60?°C. K m of Bgl3A was found to be 0.057?mM with p-nitrophenyl ??-d-glucoside and V max was 1,920 U/mg. The purified enzyme exhibited glucose tolerance with a K i of 1.5?mM. Bgl3A readily hydrolyzed glucosides with ??-linkage. Bgl3A activity was enhanced (156%) by Zn2+ and was not affected by other metal cations and reagents. The supplementation of Bgl3A (5 U/mg) with Trichoderma reesei cellulase complex (5 FPU/mg) resulted in about 70% of enhanced glucose production, which emphasizes the industrial importance of Bgl3A.  相似文献   
60.
We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号