首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
化学   42篇
数学   3篇
物理学   28篇
  2021年   3篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1993年   8篇
  1992年   7篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1983年   1篇
  1960年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
41.
42.
This review aims to provide an overview of homogeneous liquid-liquid extraction (HLLE) and dispersive liquid-liquid microextraction (DLLME) methods and their potential use in inorganic analysis. Relevant applications to the determination of metal ions, metalloids and organometals are included. The phase separation mechanisms of these unconventional solvent extraction techniques are discussed. The new trends in the field of miniaturization and automation are presented, while proposing future trends and potential new areas for their application.  相似文献   
43.
Over the last years, diverse commercial resin-based composites have dominated as dental filling materials. The purpose of the present study was to determine organic and inorganic eluates from five restorative materials using GC/MS and ICP–OES and to compare the effect on cell survival of human gingival fibroblasts of a conventional and a bioactive resin. Five commercially available restorative materials were employed for this study: ActivaTM Bioactive Restorative, ENA HRi, Enamel plus HRi Biofunction, Fuji II LC Capsule, and Fuji IX Capsule. Disks that were polymerized with a curing LED light or left to set were immersed in: 1 mL methanol or artificial saliva for GC/MS analysis, 5mL deionized water for ICP–OES, and 5mL of culture medium for cell viability. Cell viability was investigated with a modified staining sulforhodamine B assay.The following organic substances were detected: ACP, BHT, BPA, 1,4-BDDMA, CQ, DBP, DMABEE, HEMA, MCE, MeHQ, MOPA, MS, TMPTMA, and TPSb and the ions silicon, aluminum, calcium, sodium, and barium. Activa Bioactive Restorative was found to be biocompatible. Elution of organic substances depended on material’s composition, the nature of the solvent and the storage time. Ions’ release depended on material’s composition and storage time. The newly introduced bioactive restorative was found to be more biocompatible.  相似文献   
44.
45.
Optimized models for 90° polarization shift step twists for Ku, K and Ka bands are presented. The cross-section of the waveguide employed is similar to that of a rectangular one, with the difference that the walls of the shorter side are part of a circular one with the proper diameter. The optimized models have been found using the CST Microwave Studio simulation tool and in all cases the return loss is kept below -20 dB for a wide range of frequency spectrum. Two examples are given, one for Ku band and the other for K and Ka ones.  相似文献   
46.
A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L−1 and 3.3% for lead and 0.12 μg L−1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.  相似文献   
47.
A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES’s nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L−1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 μg L−1, while the limits of quantification ranged from 0.17 to 0.79 μg L−1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.  相似文献   
48.
Abstract

A simple online sequential insertion manifold coupled to a hydride generation atomic absorption spectrometer (HG‐AAS) has been developed for selective inorganic Se(IV) determination. The online method is based on the sequential insertion of sample and reagents in the integrated reaction chamber gas–liquid separator (RC‐GLS), which operates initially as reaction chamber for various sample volumes (up to 20 mL) and subsequently as gas–liquid separator with limited dead volume. The generated hydride from a large sample volume is trapped in the RC‐GLS for a short time and then it is flashed in the atomic absorption cell. The HCl and the NaBH4 concentration was optimized for selective inorganic Se(IV) determination. For 8‐mL and 16‐mL sample consumption, the sampling frequency is 40 h?1 and 24 h?1, while the detection limit is 0.04 µg L?1 and 0.03 µg L?1, respectively. The precision (relative standard deviation) for 2.0 µg L?1 Se(IV) (n=10) is 2.6% and 2.8% for 8 mL and 16 mL sample volumes, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1643d, and also by analyzing spiked natural water.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号