首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   996篇
  免费   23篇
  国内免费   5篇
化学   533篇
晶体学   7篇
力学   23篇
数学   128篇
物理学   333篇
  2023年   7篇
  2022年   15篇
  2021年   9篇
  2020年   13篇
  2019年   19篇
  2018年   20篇
  2017年   22篇
  2016年   31篇
  2015年   27篇
  2014年   36篇
  2013年   58篇
  2012年   64篇
  2011年   56篇
  2010年   43篇
  2009年   42篇
  2008年   60篇
  2007年   37篇
  2006年   46篇
  2005年   36篇
  2004年   30篇
  2003年   22篇
  2002年   18篇
  2001年   12篇
  2000年   16篇
  1999年   15篇
  1998年   18篇
  1997年   5篇
  1996年   9篇
  1995年   13篇
  1994年   12篇
  1993年   11篇
  1992年   19篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   17篇
  1983年   10篇
  1982年   10篇
  1981年   12篇
  1980年   6篇
  1979年   8篇
  1978年   15篇
  1977年   5篇
  1976年   5篇
  1957年   4篇
  1936年   4篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
991.
We present results of measurements of temperature and wavevector dependent dynamics in binary mixtures of soft polymer grafted nanoparticles and linear homopolymers. We find evidence of melting of the dynamically arrested state of the soft nanocolloids with addition of linear polymers followed by a re-entrant slowing down of the dynamics with further increase in polymer density, depending on the size ratio, δ, of the polymers and the nanocolloids. For higher δ the re-entrant behavior is not observed, even for the highest added polymer density, explored here. Possible explanation of the observed dynamics in terms of the presence of a double-glass phase is provided.  相似文献   
992.
Chiral macrocyclic V(V) salen complexes 1a-f derived from macrocyclic ligands obtained by the reaction of 1R,2R-(−) diaminocyclohexane/(1R,2R)-(+)-1,2-diphenylethylenediamine with bis-aldehydes 2 and 3 were synthesized and used as efficient catalysts in asymmetric cyanation reactions. The V(V) catalysts demonstrated excellent performance (product yields and ees up to 99%) with potassium cyanide (KCN) and sodium cyanide (NaCN). The catalytic system also performed very well with a safer source of cyanide-ethyl cyanoformate to give cyanohydrin carbonates in excellent yield and ee (up to 97%). The V(V) macrocyclic salen complex 1b retained its performance at multi-gram level and was conveniently recycled for a number of times.  相似文献   
993.
The photophysical behavior of acridine (Acr) shows facilitated water-assisted protonation equilibrium between its deprotonted (Acr* ~ 10 ns) and protonated forms (AcrH(+*) ~ 28 ns) within confined region of ordered water molecules inside AOT/H(2)O/n-heptane reverse micelles (RMs). The time-resolved-area-normalized-emission spectra confirm both Acr* and AcrH(+*), while time-resolved-emission spectra depict time evolution between them. Quenching of AcrH(+*) with N,N-dimethylaniline (DMA) is a purely diffusion-controlled bimolecular quenching with linear Stern-Volmer (S-V) plot, while nonlinearity arises with triethylamine (TEA) that forms ground state complex with AcrH(+) (AcrH(+)··H(2)O··TEA) indicating both static and dynamic quenching. Transient intermediates, DMA(?+) and AcrH(?) infer photoinduced electron transfer from DMA to Acr, while those from AcrH(+)··H(2)O··TEA complex suggest water mediated excited-state proton transfer (ESPT) between AcrH(+) and TEA. The ESPT becomes faster in larger RMs due to enhanced mobility of hydronium ions in AcrH(+)··H(2)O··TEA, which reduces in smaller RMs as water becomes much more constrained owing to stronger complexation by excess confinement.  相似文献   
994.
In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles.  相似文献   
995.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   
996.
We report the magnetic proximity effect in a ferrimagnetic Fe(3)O(4) core/ferrimagnetic γ-Mn(2)O(3) shell nanoparticle system, in terms of an enhancement of the Curie temperature (T(c)) of the γ-Mn(2)O(3) shell (~66 K) compared to its bulk value (~40 K), and the presence of magnetic ordering in its so-called paramagnetic region (i.e. above 66 K). The ferrimagnetic nature of both core and shell has been found from a neutron diffraction study. The origin of these two features of the magnetic proximity effect has been ascribed to the proximity of the γ-Mn(2)O(3) shell with a high-T(c) Fe(3)O(4) core (~858 K in bulk form) and an interface exchange coupling between core and shell. Interestingly, we did not observe any exchange bias effect, which has been interpreted as a signature of a weak interface exchange coupling between core and shell. The present study brings out the importance of the relative strength of the interface coupling in governing the simultaneous occurrence of the magnetic proximity effect and the exchange bias phenomenon in a single system.  相似文献   
997.
The green algae Chlorella (Chlorella pyrenoidosa) have the ability to bind high amounts of uranium(VI) in the pH range from 3 to 6. At pH 3 up to 20 % of the uranium is bound by the algal cells whereas the uranium removal by algal cell is almost complete at pH 5 and 6 in the concentration range of 4 × 10?4 to 1.6 × 10?3 M. Sorption capacities are in the range of 300–350 mg g?1 and 250–280 mg g?1 for fresh water and seawater respectively. Concentration of uranium was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) by using two different emission spectral lines at 409.014 and 424.167 nm. Environmental scanning electron microscopy (ESEM) complimented with energy dispersive X-ray (EDX) is used to characterize the binding sites of uranyl species on algal cell in the selected pH range. The micrographs show a regular distribution of U(VI) on the cell surface. Attenuated total reflectance-fourier transform infrared (ATRFTIR) spectrum of Chlorella indicates that the binding of U(VI) either to phosphodiesters (P–O–aryl/P–O–alkyl), and combination of amine, secondary amine and imine = NH respectively. These sites in Chlorella groups are mainly responsible for the removal and binding of U(VI) by formation of organic and/or inorganic uranyl phosphates.  相似文献   
998.
Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron–Frobenius eigenvalue of the associated controlled nonlinear kernels.  相似文献   
999.
Tania Basu  Sujata Tarafdar 《Ionics》2014,20(10):1445-1454
Gelatin films complexed with ionic salts are of current interest as potential solid polymer electrolytes. However, even without salt, gelatin films are found to have quite high ionic conductivity at room temperature (around 30 °C), when plasticized with an adequate fraction of glycerol. In the present work, the admittance and dielectric properties of gelatin are studied as a function of glycerol content and temperature. An enhancement in the ionic conductivity by four orders of magnitude to ~9.13?×?10?3 S/m at room temperature is obtained by adding 35.71 wt% of glycerol. This enhancement appears to be correlated with the changes in the local microstructure on plasticizer addition. Admittance and dielectric relaxation have been studied to understand the dynamics of the charge carriers. Differential scanning calorimetry, X-ray diffraction and scanning electron microscopy are also done.  相似文献   
1000.
We report the selective recognition of sulfate anion in aqueous medium at biological pH 7.2 over the other interfering anions based on naphthoic acid bearing tripodal ligand by applying fluorescence turn off-on mechanism. The carboxylic acid groups in the ligand enhance the solubility in water and enable it to form complex with copper salt. Thus formed L-Cu2+ ensemble quench the fluorescence of the parent ligand and in turn recognize sulfate anion via revival of fluorescence intensity. The 1:2 stoichiometry was confirmed by ESI mass spectral data and Job’s plot. The average binding constant was found to be 6.2?×?108 M?2.
Figure
Tripodal receptor based on naphthoic acid forms complex with copper in water. This L-Cu2+ ensemble selectively recognize sulfate anion in aqueous medium at pH 7.2 over the other anions by fluorescence turn off-on mechanism  相似文献   
[首页] « 上一页 [94] [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号