首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   16篇
  国内免费   2篇
化学   118篇
晶体学   2篇
力学   8篇
数学   15篇
物理学   27篇
  2024年   1篇
  2022年   6篇
  2021年   6篇
  2020年   12篇
  2019年   7篇
  2018年   15篇
  2017年   8篇
  2016年   13篇
  2015年   9篇
  2014年   5篇
  2013年   19篇
  2012年   16篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
51.
Density functional theory calculations at the B3LYP/6-31G(d) and B3LYP/6-31+G(d) levels were carried out for the adsorption of NH3 on three symmetric isomers of B80 {C 1, T h, I h}. To investigate the binding features of B80 isomers with NH3, different studies including the structural and electronic parameters, the 14N electric field gradient tensors and the atoms in molecules (AIM) properties were considered. The calculated parameters by these investigations can be used as powerful tools to find out some of the unknown aspects of electronic structures of the boron buckyball and its isomers. According to previous studies, boron buckyball as an amphoteric and a hard molecule has two distinct reactive sites defined as cap and frame which act as an acid and a base, respectively. Regarding the obtained results in this study, all the isomers had the same exposure when NH3 molecule reacted with the external wall of B80. For instance, the stability of N–B bond in the cap site was significantly more than the stability of N–B bond in the frame. Moreover, the adsorption of NH3 on frame site showed a considerable reduction in HOMO–LUMO energy gap. According to AIM theory, an electrostatic nature was observed for N–B interaction. Concerning the selected isomers of buckyball, the capability of the NH3–B80 complexes to localize electron at the N–B bond critical points depend on the reaction sites significantly. In general, 14N nuclear quadruple coupling constants and asymmetry parameter reveal a remarkable effect of NH3 adsorption on electronic structure of the B80.  相似文献   
52.
Structural Chemistry - Sulfinamides, as an asymmetric synthesizer, especially in drug synthesis, play critical roles in organic chemistry. In this study, the gas phase ion energetics data including...  相似文献   
53.
54.
The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five‐residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of 13Cα chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of 13Cβ, and 1Hα chemical shifts nor on the variation of absolute deviation of 13Cα chemical shifts relative to ψ dihedral angle. The 13Cα absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full‐DFT and ONIOM(DFT:HF) approaches illustrates that the trend of 13Cα ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc.  相似文献   
55.
A sensitive and fast method for the simultaneous determination of trace amounts of nickel and cadmium in real samples has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the N,N′‐bis(salicylaldehydo)4‐carboxyphenylenediamine (BSCPDA)–complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.02 mol L?1 ammonia buffers containing ligand has been used. Optimal analytical conditions were found to be: BSCPDA concentration of 42 μM, pH 9.6 and adsorption potential at ?50 mV versus Ag/AgCl. With an accumulation time of 20 s, the peaks current are proportional to the concentration of nickel and cadmium over the 1–180, and 0.5–200 ng mL?1 with detection limits of 0.06 and 0.03 ng mL?1 respectively. The sensitivity of method for determination of nickel and cadmium were obtained 0.54 and 0.98 nA mL ng?1, respectively. The procedure was applied to simultaneous determination of nickel and cadmium in some real and synthetic artificial samples with satisfactory results.  相似文献   
56.
In this study, we have reported the preparation of bi-supported Ziegler-Natta catalysts using magnesium ethoxide and graphene oxide as support. The polymerization process was carried out in slurry phase using triisobutylaluminum as a co-catalyst.The XRD analysis of TiCl4/graphene oxide/Mg(OEt)2 catalyst demonstrated that the space between the layers of graphene oxide had increased to 0.2 nm.The catalyst was characterized by XPS, BET, BJH, SEM, and TGA. The catalyst activity was studied for various Al/Ti molar ratios, and the catalyst activity was optimum at Al/Ti molar ratio of 315.  相似文献   
57.
(Triazinediyl)bis sulfamic acid-functionalized silica-coated magnetite nanoparticles have been prepared and applicated as an efficient catalyst for synthesis of mono-, bis-, tris- and spiro-perimidines. The desired products have been synthesized in high purity and good yields. The workup procedure of reaction is simple. The catalyst was easily separated from the reaction mixture with the assistance of an external magnetic field and reused for several runs without deterioration in catalytic activity. The core/shell nanoparticles were characterized by transmission electron microscopy, scanning electron microscope, powder X-ray diffraction, energy dispersive spectrometer, Fourier transform infrared spectroscopy and vibrating sample magnetometer.  相似文献   
58.
Modification of magnetic nanoparticle surface with l-carnosine dipeptide was developed using a simple chemical process. In order to synthesize this catalyst system, first, magnetic nanoparticles were modified with vinyl groups using trimethoxy(vinyl)silane. Next, the vinyl groups were oxidized with H2O2 to give the epoxy-functionalized MNPs. Reaction of l-carnosine with epoxide rings via amino group resulted in the functionalization of MNPs surface with l-carnosine, covalently. To explore high catalytic activity of this material, l-carnosine grafted on magnetic nanoparticles (Fe3O4@SiO2@LCar; l-CarMNP) was used as a highly efficient heterogeneous nano-organocatalyst in a multicomponent reaction in aqueous medium at room temperature. It was reusable at least for eight times without a significant decrease in its catalytic activity. The catalytic activity of l-CarMNP was compared with other magnetic nano-organocatalyst, and results demonstrate that l-CarMNP has high catalytic activity related to others tested.  相似文献   
59.
The synthesis of mono‐ and bi‐supported Ziegler–Natta catalysts using magnesium etoxide Mg(OEt)2 and graphene oxide (GO) as catalyst support for production of Ultra High Molecular Weight Polyethylene (UHMWPE) is reported in this investigation. Nano‐graphene oxide was prepared by the modified Hummer's method and its structure was analyzed by XRD and FTIR indicating the presence of hydroxyl groups on graphene oxide and the formation of an exfoliated structure. The activity of TiCl4/Mg(OEt)2, TiCl4/Mg(OEt)2‐GO, and TiCl4/GO catalysts in terms of grams of PE produced per mmol of Ti per hour was experimentally obtained for catalysts with different ratios of co‐catalyst (triisobutylaluminium) to TiCl4. For all three series of catalysts, the activity curve showed an optimum point at a specific Al/Ti molar ratio. Catalyst activity was highest for TiCl4/Mg(OEt)2 and lowest for TiCl4/GO. The characterization of UHMWPE products indicated that the viscosity average molecular weight (Mv) was highest for the polymer produced by TiCl4/Mg(OEt)2 and lowest for the polymer produced by TiCl4/GO. Furthermore, thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and mechanical tensile testing were conducted on the prepared polymers indicating that the polymer produced by TiCl4/GO had the highest thermal and mechanical properties, while these properties were at their minimum for polymers produced by TiCl4/Mg(OEt)2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
60.
One-dimensional (1D) nanostructured oxides are proposed as excellent electron transport materials (ETMs) for perovskite solar cells (PSCs); however, experimental evidence is lacking. A facile hydrothermal approach was employed to grow highly oriented anatase TiO2 nanopyramid arrays and demonstrate their application in PSCs. The oriented TiO2 nanopyramid arrays afford sufficient contact area for electron extraction and increase light transmission. Moreover, the nanopyramid array/perovskite system exhibits an oriented electric field that can increase charge separation and accelerate charge transport, thereby suppressing charge recombination. The anatase TiO2 nanopyramid array-based PSCs deliver a champion power conversion efficiency of approximately 22.5 %, which is the highest power conversion efficiency reported to date for PSCs consisting of 1D ETMs. This work demonstrates that the rational design of 1D ETMs can achieve PSCs that perform as well as typical mesoscopic and planar PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号