首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   15篇
  国内免费   18篇
化学   280篇
晶体学   1篇
力学   39篇
数学   46篇
物理学   83篇
  2023年   5篇
  2022年   9篇
  2021年   14篇
  2020年   22篇
  2019年   25篇
  2018年   36篇
  2017年   20篇
  2016年   43篇
  2015年   25篇
  2014年   32篇
  2013年   46篇
  2012年   27篇
  2011年   25篇
  2010年   21篇
  2009年   17篇
  2008年   17篇
  2007年   16篇
  2006年   16篇
  2005年   11篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有449条查询结果,搜索用时 21 毫秒
151.
Fourier transform infrared imaging spectroscopy (FT-IRIS) has been used extensively to characterize the composition and orientation of macromolecules in thin tissue sections. Earlier and current studies of normal and polarized FT-IRIS data have primarily used tissues sectioned onto infrared transmissive substrates, such as salt windows. Recently, the use of low-emissivity (“low-e”) substrates has become of great interest because of their low cost and favorable infrared optical properties. However, data are collected in transflectance mode when using low-e slides and in transmittance mode using salt windows. In the current study we investigated the comparability of these two modes for assessment of the composition of connective tissues. FT-IRIS data were obtained in transflectance and transmittance modes from serial sections of cartilage, bone and tendon, and from a standard polymer, polymethylmethacrylate. Both non-polarized and polarized FTIR data differed in absorbance, and in some cases peak position, between transflectance and transmittance modes. However, the FT-IRIS analysis of the collagen fibril orientation in cartilage resulted in the expected zonal arrangement of fibrils in both transmittance and transflectance. We conclude that numerical comparison of FT-IRIS-derived parameters of tissue composition should account for substrate type and data collection mode, while analysis of overall tissue architecture may be more invariant between modes.  相似文献   
152.
Generating beams with a desired quadratic lateral intensity distribution using 1D binary masks was analyzed, in detail. Effect of width of the first bar as well as the gray scale increment rate on the generated shaped beam was examined. It is shown that increasing the gray scale rate produces smoother and broaden profile. Besides, it was demonstrated that width of the first bar has great impact on the generated profile, so by increasing the width, the generated profile becomes sharper. Theoretical results are confirmed by experiment, as well.  相似文献   
153.
A combination of silica chloride and sodium nitrite in the presence of wet SiO 2 were used as an effective oxidizing agent for the oxidation of dihydropyridines to their corresponding pyridine derivatives under mild and heterogeneous conditions in moderate to excellent yields.  相似文献   
154.
In the present study, oxidative coupling of thiols was carried out using immobilized Cu, Ni and Pd complexes on SBA-15 mesostructured as novel and green heterogeneous catalysts under mild reaction conditions. These supported complexes were characterized by FT-IR, XRD, TEM, TGA, EDX, ICP and BET techniques. These nanohybrid robust catalysts have outstanding advantages such as facile synthesis, use of green medium, high surface area, easy separation and workup, excellent reused for several consecutive cycles without noticeable change in its catalytic activity, and short reaction time.  相似文献   
155.
In the present work, Mn‐doped CuO‐NPs‐AC was prepared by a simple method, characterized using various techniques such as FESEM, EDX, XRD, PSD, and pHpzc and finally used for the adsorption of malachite green (MG) and methyl orange (MO) in a number of single and binary solutions. A series of adsorption experiments were conducted to investigate and optimize the influence of various factors (such as different pH, concentration of MG and MO, adsorbent mass, and sonication time) on the simultaneous adsorption of MG and MO using response surface methodology. Under optimal conditions of pH 10, adsorbent dose of 0.02 g, MG concentration of 30 mg L?1, MO concentration of 30 mg L?1, and sonication time of 4.5 min at room temperature, the maximum predicted adsorption was observed to be 100.0%, for both MG and MO, showing that there is a favorable harmony between the experimental data and model predictions. The adsorption isotherm of MO and MG by Mn‐doped CuO‐NPs‐AC could be well clarified by the Langmuir model with maximum adsorption capacity of 320.69 mg g?1 and 290.11 mg g?1 in the single solution and 233.02 mg g?1 and 205.53 mg g?1 in the binary solution by 0.005 g of adsorbent mass for MG and MO, respectively. Kinetic studies also revealed that both MG and MO adsorption were better defined by the pseudo‐second order model for both solutions. In addition, the thermodynamic constant studies disclosed that the adsorption of MG and MO was likely to be influenced by a physisorption mechanism. Eventually, the reusability of the Mn‐doped CuO‐NPs‐AC after six times showed a reduction in the adsorption percentage of MG and MO.  相似文献   
156.
Journal of Thermal Analysis and Calorimetry - In this study, the mixed convection of flow in a microchannel containing nanofluid is simulated by the Lattice Boltzmann Method. The...  相似文献   
157.
158.
Lab-on-a-chip (LOC) technologies can take advantage of sheath flows for particle/cell focusing before sensing or sorting. The integration of focusing with other microscale manipulation techniques (e.g., sorting) creates a trade-off between the throughput of the device and its performance. Therefore, exploring the effective parameters for cells/particles focusing enables us to improve the desired output of LOC devices. A common configuration for sheath-assisted focusing is Y junctions, which are parametrically studied in this paper. First, a computational model was developed and validated by comparing it with our experimental results. Using COMSOL Multiphysics modeling, the effects of multiple parameters were studied. These parameters include the sheath flow ratio (sheath flow over total flow), width ratio (width of the sheath inlet over the total width), junction angles, and particle size on the focusing width and the distribution of the particles within the focusing region. Then, the numerical data were used to develop two generalized linear models to predict the focusing width of the particles and the standard deviation of the position of the particles. The results showed that the focusing width is greatly impacted by the sheath flow rate ratio. Further, the standard deviation of the position of the particles, which represents the concentration of the particles, is mostly dependent on the flow rate ratio, width ratio, and particle size. Our results provide a better understanding of how the device geometrical and operational factors affect the position of the particles in the development of high-performance on-chip sensing and sorting of both cells and particles.  相似文献   
159.
Journal of Thermal Analysis and Calorimetry - In this paper, the finite volume method is used to investigate the laminar forced convection of water–copper nanofluid between two porous...  相似文献   
160.
Drop shape techniques, such as axisymmetric drop shape analysis, are widely used to measure surface properties, as they are accurate and reliable. Nevertheless, they are not applicable in experimental studies dealing with fluid configurations that do not present an apex. A new methodology is presented for measuring interfacial properties of liquids, such as surface tension and contact angles, by analyzing the shape of an axisymmetric liquid-fluid interface without use of apex coordinates. The theoretical shape of the interface is generated numerically as a function of surface tension and some geometrical parameters at the starting point of the interface, e.g., contact angle and radius of the interface. Then, the numerical shape is fitted to the experimental profile, taking the interfacial properties as adjustable parameters. The best fit identifies the true values of surface tension and contact angle. Comparison between the experimental and the theoretical profiles is performed using the theoretical image fitting analysis (TIFA) strategy. The new method, TIFA-axisymmetric interfaces (TIFA-AI), is applicable to any axisymmetric experimental configuration (with or without apex). The versatility and accuracy of TIFA-AI is shown by considering various configurations: liquid bridges, sessile and pendant drops, and liquid lenses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号