首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   10篇
化学   165篇
力学   7篇
数学   16篇
物理学   84篇
  2023年   8篇
  2022年   8篇
  2021年   4篇
  2020年   7篇
  2019年   16篇
  2018年   3篇
  2017年   4篇
  2016年   10篇
  2015年   3篇
  2014年   11篇
  2013年   17篇
  2012年   15篇
  2011年   15篇
  2010年   13篇
  2009年   14篇
  2008年   8篇
  2007年   19篇
  2006年   16篇
  2005年   16篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
191.
In this study a major lectin called Concanavalin A (ConA) has been micropatterned on a glass substrate by microcontact printing and the patterns have been characterized with fluorescent and atomic force microscope for their uniformity. Interaction of the patterns with mammalian cells has been investigated by culturing L929 mouse fibroblast cells on the ConA printed glass surface. Cell culture results obtained from the microcontact printed patterns have also been compared and benchmarked with another patterning technique named micromolding in capillaries (MIMIC). It has been revealed that in spite of molecular level heterogeneity and agglomeration of protein molecules in microcontact printed form, they can still interact with cell surface glycoproteins, impede the mobility of membrane receptor which results in altered morphology of the fibroblast cells.  相似文献   
192.
In the search for uranium‐based ionic liquids, tris(N,N‐dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1‐butyl‐3‐methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra‐, penta‐, hexa‐, and heptamethylenedithiocarbamates, N,N‐diethyldithiocarbamate, N‐methyl‐N‐propyldithiocarbamate, N‐ethyl‐N‐propyldithiocarbamate, and N‐methyl‐N‐butyldithiocarbamate have been explored. X‐ray single‐crystal diffraction allowed unambiguous structural characterization of all compounds except N‐methyl‐N‐butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X‐ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase‐transition behavior depending on the N,N‐dialkyldithiocarbamato ligand with the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N‐dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N‐methyl‐N‐propyldithiocarbamato)uranylate, tris(N‐ethyl‐N‐propyldithiocarbamato)uranylate, and tris(N‐methyl‐N‐butyldithiocarbamato)uranylate, lead to the formation of (room‐temperature) ionic liquids, which confirms that low‐symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.  相似文献   
193.
Alumina deposition on platinum grading electrodes in high voltage direct current (HVDC) transmission modules is an unsolved problem that has been around for more than three decades. This is due to the unavoidable corrosion of aluminum heat sinks that causes severe damage to electrical power plants and losses in the range of a million Euro range per day in power outage. Simple experiments in a representative HV test setup showed that aluminates at concentrations even below 10?8 mol L?1 can deposit on anodes through neutralization by protons produced in de‐ionized water (κ≤0.15 μS cm?1) at 20–35 kV (8 mA) per electrode. In this otherwise electrolyte‐poor aqueous environment, the depositions are formed three orders of magnitude below the critical precipitation concentration at pH 7! In the presence of an inert electrolyte such as TMAT (tetramethylammonium‐p‐toluenesulfonate), at a concentration level just above that of the total dissolved aluminum, no deposition was observed. Deposition can be also prevented by doping with CO2 gas at a concentration level that is magnitudes lower than that of the dissolved aluminum. From an overview of aqueous aluminum chemistry, the mystery of the alumina deposition process and its inhibition by CO2 is experimentally resolved and fully explained by field accumulation and repulsion models in synergism with acid–base equilibria. The extraordinary size of the alumina depositions is accounted for in terms of proton tunneling through “hydrated” alumina, which is supported by quantum chemical calculations. As a consequence, pulse‐purging with pure CO2 gas is presented as a technical solution to prevent the deposition of alumina.  相似文献   
194.
We study analytically and numerically the noise-induced transition between an absorbing and an oscillatory state in a Duffing oscillator subject to multiplicative, Gaussian white noise. We show in a non-perturbative manner that a stochastic bifurcation occurs when the Lyapunov exponent of the linearised system becomes positive. We deduce from a simple formula for the Lyapunov exponent the phase diagram of the stochastic Duffing oscillator. The behaviour of physical observables, such as the oscillators mean energy, is studied both close to and far from the bifurcation.Received: 8 August 2003, Published online: 19 November 2003PACS: 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems  相似文献   
195.
In acid-media ([H+] = 0.01–0.06 M), each of the thiol compounds, D-penicillamine (PEN, LPH2) and captopril (CAP, LCH2) exist in several proton-dependent forms which can reduce the superoxo complex [(en)(dien)CoIII(O2)CoIII(en)(dien)]5+ (1) to the corresponding peroxo [(en)(dien)CoIII(O2)CoIII(en)(dien)]4+ (2) or the hydroperoxo complex [(en)(dien)CoIII(OOH)CoIII(en)(dien)]5+ (3). The observed first-order rate constants, ko,P and ko,C for PEN and CAP increase with the increase in [TPEN] and [TCAP] (which are the analytical concentrations of the respective thiols) but decrease with the increase in the media-acidity ([H+]) and the media ionic strength (I). The protolytic equilibria in aqueous solution allow several potentially reducing forms to coexist for both PEN (LPH3+, LPH2, LPH?, and LP2?) and CAP (LCH2, LCH?, LC2?) but the kinetic analyses reveal that the order of reactivity for the species are LPH3+ ~ LPH2 <<< LPH? and LCH2 < LCH? <<< LC2?, respectively. The predominance and higher reactivities of the anionic species, LPH? and LC2? are supported by the negative slopes of the plots of ko,P or ko,C versus I. Moreover, a large value of kH/kD for PEN suggests an inner-sphere electroprotic reaction pathway while the absence of such effect for CAP strongly supports an outer-sphere electron transfer reaction. These propositions are supported by the structural features of LPH? and LC2?.  相似文献   
196.
A surfactant‐free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single‐phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot‐pressed nanostructured compacts (Eg≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S2σ) at 550 K. S2σ values are 8‐fold higher than equivalent materials prepared using citric acid as a structure‐directing agent, and electrical properties are comparable to the best‐performing, extrinsically doped p‐type polycrystalline tin selenides. The method offers an energy‐efficient, rapid route to p‐type SnSe nanostructures.  相似文献   
197.
Although detailed structure-activity, physicochemical and biophysical investigations in probing the anchor influence in liposomal gene delivery have been reported for glycerol-based transfection lipids, the corresponding investigation for non-glycerol based simple monocationic transfection lipids have not yet been undertaken. Towards this end, herein, we delineate our structure-activity and physicochemical approach in deciphering the anchor dependency in liposomal gene delivery using fifteen new structural analogues (lipids 1-15) of recently reported non-glycerol based monocationic transfection lipids. The C(14) analogues in both series 1 (lipids 1-6) and series 2 (lipids 7-15) showed maximum efficiency in transfecting COS-1 and CHO cells. However, the C(12) analogue of the ether series (lipid 3) exhibited a seemingly anomalous behavior compared with its transfection efficient C(10) and C(14) analogues (lipids 2 and 4) in being completely inefficient to transfect both COS-1 and CHO cells. The present structure-activity investigation also convincingly demonstrates that enhancement of transfection efficiencies through incorporation of membrane reorganizing unsaturation elements in the hydrophobic anchor of cationic lipids is not universal but cell dependent. The strength of the interaction of lipids 1-15 with DNA was assessed by their ability to exclude ethidium bromide bound to the DNA. Cationic lipids with long hydrophobic tails were found, in general, to be efficient in excluding EtBr from DNA. Gel to liquid crystalline transition temperatures of the lipids was measured by fluorescence anisotropy measurement technique. In general (lipid 2 being an exception), transfection efficient lipids were found to have their mid transition temperatures at or below physiological temperatures (37 degrees C).  相似文献   
198.
Summary The preparation of isomeric complexes [OsIIIX2L2]ClO4· H2O [{(4)} and (5): X = Cl or Br, L(1) = 2-(phenylazo)-pyridine (L1) or 2-(m-tolylazo)pyridine(L2)] via stereo-retentive oxidation of the corresponding osmium(II) precursors [(2) and (3), respectively] is described. The complexes were characterized using spectroscopic and electrochemical methods. The low-spin (idealized t 2g 5 ; S = 1/2) paramagnetic complex ions display characteristic osmium(III) e.p.r. spectra in frozen (-196° C) MeCNPhMe. In dry MeCN solution, the OsX2N4 unit exhibits irreversible [OsX2L2]2+/[OsX2L2]+ and reversible [OsX2L2]+/[OsX2L2] couples at ca. 1.8 and 1.0 V versus saturated calomel electrode (s.c.e.), respectively. The use of (4)/(5) as an oxidant is noted.  相似文献   
199.
A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.  相似文献   
200.
Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture. However, this technology is still poorly investigated to model ovarian tumors. In this study, a 3D bioprinted ovarian tumor model combining cancer cells (SKOV-3) and cancer associated fibroblasts (CAFs) are described. The resulting tumor models show their ability to maintain cell viability and proliferation. Cells are observed to self-assemble in heterotypic aggregates. Moreover, CAFs are observed to be recruited and to circle cancer cells reproducing an in vivo process taking place in the tumor microenvironment. Interestingly, this approach also shows its ability to rapidly generate a high number of reproducible tumor models that can be subjected to usual characterizations (cell viability and metabolic activity; histology and immunological studies; and real-time imaging). Therefore, these ovarian tumor models can be an interesting tool for high throughput drug screening applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号