首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   7篇
  国内免费   2篇
化学   82篇
晶体学   1篇
力学   5篇
数学   61篇
物理学   23篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   13篇
  2014年   3篇
  2013年   17篇
  2012年   11篇
  2011年   10篇
  2010年   9篇
  2009年   3篇
  2008年   7篇
  2007年   17篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
In the last two decades, the augmented linear systems and the saddle point problems have been solved by many researchers who have used the conjugate gradient method or the generalized SOR iterative method and variants of them. In the latter class of methods, when the block \(A \in {\mathrm{I\!R}}^{m\times m}\) of the matrix coefficient \(\mathcal {A} = \left[ \begin{array}{cc} A &{} B \\ -B^T &{} 0\end{array}\right] \in {\mathrm{I\!R}}^{(m+n) \times (m+n)}\), \(m \ge n,\) of the linear system to be solved, is symmetric positive definite and \({\mathrm{rank}}(B) =r \le n\), convergence regions and optimal values of the parameters involved have been determined. In this work, we consider the block A to be nonsymmetric positive definite, \({\mathrm{rank}}(B) =r < n \), and use a two-level stationary iterative method whose main step is the linear second-order stationary iterative method for the solution of this class of problems. This method leads to the singular Manteuffel algorithm and the determination of its optimal parameters. As a byproduct, the optimal parameters of the Generalized Modified SSOR method in a particular case are also determined. Numerical examples verify our theoretical findings.  相似文献   
22.
The authors present a detailed study of the microscopic parameters, which control the miscibility in binary linear/star polymer blends. The effective interactions of linear/star polymer blends are studied by means of Monte Carlo simulations and comparison is made with linear/linear and star/star blends, which they also determined. Using the bond fluctuation model on a simple cubic lattice, the authors are able to simulate symmetric linear/linear, star/star, and, for the first time, linear/star blends with a moderate number of arms. The simulations were performed at a volume fraction of occupied lattice sites phi=0.5, which corresponds to dense polymer mixtures for this algorithm. In particular, we study star/star blends with 4, 8, and 12 arms and the respective linear/linear blends as well as linear/star blends, all having the same total number of units equal to 73 and 121. The authors find that linear/star blends are more miscible than the corresponding linear/linear blends, which is in agreement with recent experimental and theoretical results. They find that linear/star mixtures are less miscible than star/star blends, a result which is also verified by theoretical findings.  相似文献   
23.
24.
The dielectric properties of poly(ethylene oxide) (PEO) are studied by dielectric relaxation spectroscopy measurements in wide ranges of frequency (5–2×109 Hz) and temperature (193 − 300 K). PEO/water systems are also studied in a wide range of water content h (0 − 0.85 grams of water per grams of dry PEO). The measurements allow to distinguish between the dipolar secondary mechanism γ and effects related to free charge motion. The data are analyzed within the formalisms of permittivity, ϵ*, and electric modulus, M*. The water has been found to plasticize the dipolar process and to affect strongly the conduction process. A critical water content hc, hc = 0.13, has been found for the mechanism of charge transport.  相似文献   
25.
The universal Gröbner basis of an ideal is a Gröbner basis with respect to all term orders simultaneously. We characterize in graph theoretical terms the elements of the universal Gröbner basis of the toric ideal of a graph. We also provide a new degree bound. Finally, we give examples of graphs for which the true degrees of their circuits are less than the degrees of some elements of the Graver basis.  相似文献   
26.
27.
This paper addresses Markov Decision Processes over compact state and action spaces. We investigate the special case of linear dynamics and piecewise-linear and convex immediate costs for the average cost criterion. This model is very general and covers many interesting examples, for instance in inventory management. Due to the curse of dimensionality, the problem is intractable and optimal policies usually cannot be computed, not even for instances of moderate size.  相似文献   
28.
Diatomic TiFe, a 12 valence electron molecule that is isoelectronic with Cr(2), has been spectroscopically investigated for the first time. In addition, the first computational study that includes the ground and excited electronic states is reported. Like Cr(2), TiFe has a (1)Σ(+) ground state that is dominated by the 1σ(2) 2σ(2) 1π(4) 1δ(4) configuration. Rotationally resolved spectroscopy has established a ground state bond length of 1.7024(3) A?, quite similar to that found for Cr(2) (r(0) = 1.6858 A?). Evidently, TiFe exhibits a high degree of multiple bonding. The vibronic spectrum is highly congested and intense to the blue of 20?000 cm(-1), while two extremely weak band systems, the [15.9](3)Π(1) ← X (1)Σ(+) and [16.2](3)Π(0+) ← X (1)Σ(+) systems, are found in the 16?000-18?500 cm(-1) region. The bond lengths, obtained by inversion of the B(e) (') values, and vibrational frequencies of the two upper states are nearly identical: 1.886?A? and 344 cm(-1) for [15.9](3)Π(1) and 1.884 A? and 349 cm(-1) for [16.2](3)Π(0+). The measured spin-orbit splitting of the (3)Π state is consistent with its assignment to the 1σ(2) 2σ(2) 1π(4) 1δ(3) 2π(1) configuration, as is also found in the ab initio calculations.  相似文献   
29.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   
30.
Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号