首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   12篇
  国内免费   1篇
化学   270篇
晶体学   8篇
力学   7篇
数学   29篇
物理学   107篇
  2023年   4篇
  2022年   11篇
  2021年   4篇
  2020年   12篇
  2019年   17篇
  2018年   9篇
  2017年   13篇
  2016年   8篇
  2015年   10篇
  2014年   14篇
  2013年   32篇
  2012年   31篇
  2011年   21篇
  2010年   18篇
  2009年   22篇
  2008年   17篇
  2007年   26篇
  2006年   15篇
  2005年   17篇
  2004年   18篇
  2003年   6篇
  2002年   15篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
411.
Das  Asim K.  Roy  Aparna  Saha  Bidyut 《Transition Metal Chemistry》2001,26(6):630-637
The kinetics and mechanism of the CrVI oxidation of ethane-1,2-diol in the presence and absence of picolinic acid (PA) in aqueous acid media have been carried out under the conditions: [ethane-1,2-diol]T [CrVI]T and [PA]T [CrVI]T at different temperatures. The micellar effect on the title reactions has been studied in order to substantiate the suggested mechanism. Under the experimental conditions, ethane-1,2-diol is predominantly oxidised to hydroxyethanal and the kinetic contribution from the glycol splitting path is negligible. In the absence of PA, the simple alcohol oxidation mechanism, involving one —OH group, operates. In the PA-catalysed path, a CrVI–PA cyclic complex has been proposed as the active oxidant. In the PA-catalysed path, the CrVI–PA complex is the subject of nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition (through 2e transfer) leading to hydroxyethanal and the CrIV–PA complex. The CrIV–PA complex then participates further in the oxidation of organic substrate and ultimately is converted into the inert CrIII–PA complex. It is striking to note that the uncatalysed path shows a second-order dependence on [H+], while the PA-catalysed path shows a zeroth-order dependence on [H+]. Both the uncatalysed and PA-catalysed paths show first-order dependence on [ethane-1,2-diol]T and on [CrVI]T. The PA-catalysed path is first-order in [PA]T. All these observations (i.e. dependence patterns on the reactants) remain unaltered in the presence of externally added surfactants. The effect of the cationic surfactant (i.e. cetylpyridinium chloride, CPC) and anionic surfactant (i.e. sodium dodecyl sulfate, SDS) has been studied both in the presence and absence of PA. CPC acts as an inhibitor and restricts the reaction to aqueous phase, while SDS acts as a catalyst and the reactions proceed simultaneously in both aqueous and micellar phase, with an enhanced rate in the micellar phase. The observed micellar effects have been explained by considering the preferential partitioning of the reactants between the micellar and aqueous phase. The applicability of different kinetic models, e.g. the Menger–Portnoy model, Piszkiewicz cooperative model, pseudo-phase ion exchange (PIE) model, has been tested to explain the observed micellar effects.  相似文献   
412.
The amide functional group is commonly found in peptides, proteins, pharmaceutical compounds, natural products, and polymers. The synthesis of amides is typically performed by using classical approaches that involve the reaction between a carboxylic acid and an amine in the presence of an activator. Amides are thought to be an inert functional group, because they are unsusceptible to nucleophile attack, owing to their low electrophilicity. The reason for this resistance is clear: the resonance stability of the amide bond. However, transition metal catalysis can circumvent this stability by selectively rupturing the N?C bond of the amide, thereby facilitating further cross‐coupling or other reactions. In this Focus Review, we discuss the recent advances in this area and present a summary of methods that have been developed for activating the amide N?C bond by using precious and non‐precious metals.  相似文献   
413.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   
414.
Inflammation of the gastrointestinal tract is associated with reactive oxygen species (ROS) genesis. Alleviation of oxidative stress is achieved by using antioxidants and probiotics. Present study investigates a synergistic effect of the probiotic Escherichia coli CFR 16 containing Vitreoscilla haemoglobin gene (vgb), green fluorescent protein (gfp) gene and pyrroloquinoline quinone (pqq) gene cluster on oxidative stress induced by 1,2-dimethylhydrazine (DMH). Adult virgin Charles foster male rats (3–4 months) weighing 200–250 g were administered with DMH (25 mg/kg body weight, s.c.) twice a week for eight consecutive weeks. Rats receiving only DMH dose showed increased lipid peroxidation in liver and intestinal tissues with reduced activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Oral dose of E. coli CFR 16::vgb-gfp harbouring pqq gene cluster increased rat faecal PQQ concentration by twofold, reduced lipid peroxidation and retained SOD, CAT and GPx activities close to normal levels in liver and colonic tissues following DMH treatment. In addition, significant protection was found in colonic histological sections of these rat groups. This study demonstrates a protective efficacy in the following order: E. coli CFR 16?<?E. coli CFR 16::vgb-gfp?<?vitamin C?=?PQQ?<?E. coli CFR 16::vgb-gfp (pqq).  相似文献   
415.

Background  

"Type II"/Receptor cells express G protein-coupled receptors (GPCRs) for sweet, umami (T1Rs and mGluRs) or bitter (T2Rs), as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin) couples to the T2R (bitter) receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3) receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14) in mouse taste buds.  相似文献   
416.
Hydrogen bonding is one of the most important and ubiquitous interactions present in Nature. Several studies have attempted to characterise and understand the nature of this very basic interaction. These include both experimental and theoretical investigations of different types of chemical compounds, as well as systems subjected to high pressure. The O–H..O bond is of course the best studied hydrogen bond, and most studies have concentrated on intermolecular hydrogen bonding in solids and liquids. In this paper, we analyse and characterise normal hydrogen bonding of the general type, D–H...A, in intramolecular hydrogen bonding interactions. Using a first-principles density functional theory approach, we investigate low energy conformers of the twenty α-amino acids. Within these conformers, several different types of intramolecular hydrogen bonds are identified. The hydrogen bond within a given conformer occurs between two molecular groups, either both within the backbone itself, or one in the backbone and one in the side chain. In a few conformers, more than one (type of) hydrogen bond is seen to occur.

Interestingly, the strength of the hydrogen bonds in the amino acids spans quite a large range, from weak to strong. The signature of hydrogen bonding in these molecules, as reflected in their theoretical vibrational spectra, is analysed. With the new first-principles data from 51 hydrogen bonds, various parameters relating to the hydrogen bond, such as hydrogen bond length, hydrogen bond angle, bond length and vibrational frequencies are studied. Interestingly, the correlation between these parameters in these bonds is found to be in consonance with those obtained in earlier experimental studies of normal hydrogen bonds on vastly different systems. Our study provides some of the most detailed first-principles support, and the first involving vibrational frequencies, for the universality of hydrogen bond correlations in materials.  相似文献   
417.
The numbern 1 ofi-edge network cutsets in a graph is an important parameter in reliability analysis. Using a theorem of Lomonosov and Polesskii, Ball and Provan have shown that the numbern i of minimum cardinality network cutsets can be determined in polynomial time. This paper gives a polynomial time algorithm for determiningn r+k for any fixedk, as a special case of counting cuts of specified maximum weight in an edge-weighted graph. The resulting improvement in existing reliability bounds is shown to be substantial.  相似文献   
418.
Zündel ion (H5O) is one of the two important structures formed during the proton transfer process in aqueous system. This work reports microsolvation of Zündel ion using density functional theory based B3LYP method with aug‐cc‐pVTZ basis set. Interaction of Zündel ion with four water molecules in its first solvation shell is studied using many‐body analysis approach. A change in many‐body energies and their contribution to the binding energy of a complex during the proton transfer process from donor to acceptor water molecule in Zündel ion‐4H2O complex is obtained. For the hydrated Zündel ion complex, the contribution from total two‐body, three‐body, four‐body, five‐body, and relaxation energy to the binding energy is 84.7, 14, 6.87, 1.6, and 4%, respectively, at B3LYP/aug‐cc‐pVTZ level. Relaxation energy and total five‐body energy have repulsive contribution to the binding energy of a hydrated Zündel ion complex. It is found that the relaxation energy and binding energy of a Zündel‐4H2O complex is the maximum and minimum, respectively, when a shared proton is at equal distance from oxygen atom of donor and acceptor water molecules. A significant change in two‐body, three‐body, and four‐body energies for which Zündel ion is one of the many‐body terms is observed during the proton transfer process. A change in total two‐body, total three‐body, total four‐body, and relaxation energy is about 2.6, 1.8, 0.4, and 1.1%, respectively, during the proton transfer process. A change in two‐body, three‐body, and four‐body interaction energies between water molecules is very small during the proton transfer process. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   
419.
It was conjectured in 1981 by the third author that if a graph G does not contain more than t pairwise edge-disjoint triangles, then there exists a set of at most 2t edges that shares an edge with each triangle of G. In this paper, we prove this conjecture for odd-wheel-free graphs and for ‘triangle-3-colorable’ graphs, where the latter property means that the edges of the graph can be colored with three colors in such a way that each triangle receives three distinct colors on its edges. Among the consequences we obtain that the conjecture holds for every graph with chromatic number at most four. Also, two subclasses of K 4-free graphs are identified, in which the maximum number of pairwise edge-disjoint triangles is equal to the minimum number of edges covering all triangles. In addition, we prove that the recognition problem of triangle-3-colorable graphs is intractable.  相似文献   
420.
Here, we describe an approach wherein negative electrospray ionization mass spectrometry has used to understand the relative flux through phosphate containing metabolic intermediates associated with central carbon metabolism after administering cells with 13C‐labeled substrates. The method was applied to examine the 13C incorporation through glycolysis in T47D breast cancer cells and showed reduction of glycolytic relative flux upon treatment with 2‐Deoxyglucose. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号