首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
  国内免费   1篇
化学   64篇
物理学   20篇
  2020年   2篇
  2015年   1篇
  2013年   1篇
  2012年   11篇
  2011年   8篇
  2008年   5篇
  2007年   4篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   7篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
61.
62.
63.
We present experimental rotational distributions for the reaction H + D2 --> HD(nu' = 3,j') + D at eight different collision energies between 1.49 and 1.85 eV. We combine a previous measurement of the state-resolved excitation function for this reaction [Ayers et al., J. Chem. Phys. 119, 4662 (2003)] with the current data to produce a map of the relative reactive cross section as a function of both collision energy and rotational quantum number (an E-j' plot). To compare with the experimental data, we also present E-j' plots resulting from both time-dependent and time-independent quantum mechanical calculations carried out on the BKMP2 surface. The two calculations agree well with each other, but they produce rotational distributions significantly colder than the experiment, with the difference being more pronounced at higher collision energies. Disagreement between theory and experiment might be regarded as surprising considering the simplicity of this system; potential causes of this discrepancy are discussed.  相似文献   
64.
This article presents a quasiclassical trajectory (QCT) method to determine the reaction probability as a function of the total angular momentum J for any given value of the initial rotational angular momentum j. The proposed method is based on a discrete sampling of the total and orbital angular momenta for each trajectory and on the development of equations that have a clear counterpart in the quantum-mechanical (QM) case. The reliability of the method is illustrated by comparing QCT and time-dependent wave-packet QM results for the H+D(2)(upsilon=0,j=4,10) reaction. The small discrepancies between both sets of calculations, when they exist, indicate some genuine quantum effects. In addition, a procedure to extract the reaction probabilities as a function of J when trajectories are calculated in the usual way using a continuous distribution of impact parameters is also described.  相似文献   
65.
Time-dependent real wave packet (RWP) and quasiclassical trajectory (QCT) calculations have been carried out to study the H(+) + LiH reaction on the ab initio potential-energy surface of Martinazzo et al. [J. Chem. Phys., 2003, 119, 11241]. Total initial state-selected and final state-resolved reaction probabilities for the two possible reaction channels, H(2)(+) + Li and LiH + H(+), have been calculated for total angular momentum J=0 at a broad range of collision energies. Integral cross sections and thermal rate coefficients have been calculated using the QCT method and from the corresponding J=0 RWP reaction probabilities by means of a capture model. The calculated thermal rate coefficients are found to be nearly independent of temperature in the 100-500 K interval with a value of approximately 10(-9) cm(3) s(-1), which is in good agreement with estimates used in evolutionary models of early-Universe lithium chemistry. The RWP results are found to be in good agreement overall with the corresponding QCT calculations.  相似文献   
66.
A complete formulation of a statistical quasiclassical trajectory (SQCT) model is presented in this work along with a detailed comparison with results obtained with the statistical quantum mechanical (SQM) model for the H+ +D2 and H+ +H2 reactions. The basic difference between the SQCT and the SQM models lies in the fact that trajectories instead of wave functions are propagated in the entrance and exit channels. Other than this the two formulations are entirely similar and both comply with the principle of detailed balance and conservation of parity. Reaction probabilities, and integral and differential cross sections (DCS's) for these reactions at different levels of product's state resolution and from various initial states are shown and discussed. The agreement is in most cases excellent and indicates that the effect of tunneling through the centrifugal barrier is negligible. Some differences are found, however, between state resolved observables calculated by the SQCT and the SQM methods which makes use of the centrifugal sudden (coupled states) approximation (SQM-CS). When this approximation is removed and the full close coupling treatment is used in the SQM model (SQM-CC), an almost perfect agreement is achieved. This shows that the SQCT is sensitive enough to show the relatively small inaccuracies resulting from the decoupling inherent to the CS approximation. In addition, the effect of ignoring the parity conservation is thoroughly examined. This effect is in general minor except in particular cases such as the DCS from initial rotational state j=0. It is shown, however, that in order to reproduce the sharp forward and backward peaks the conservation of parity has to be taken into account.  相似文献   
67.
68.
The H+ +D2(v=0,j=0)-->HD+D + reaction has been theoretically investigated by means of a time independent exact quantum mechanical approach, a quantum wave packet calculation within an adiabatic centrifugal sudden approximation, a statistical quantum model, and a quasiclassical trajectory calculation. Besides reaction probabilities as a function of collision energy at different values of the total angular momentum, J, special emphasis has been made at two specific collision energies, 0.1 and 0.524 eV. The occurrence of distinctive dynamical behavior at these two energies is analyzed in some detail. An extensive comparison with previous experimental measurements on the Rydberg H atom with D2 molecules has been carried out at the higher collision energy. In particular, the present theoretical results have been employed to perform simulations of the experimental kinetic energy spectra.  相似文献   
69.
This article considers the extent to which one can control the reactivity of atom-diatom systems through reactant polarisation. Three different limits for reactivity manipulation are defined: "absolute" limits that do not depend on the reaction dynamics but can only be obtained for particular combinations of quantum numbers, "unconstrained" limits that depend on dynamics but not on constraints imposed by any particular experimental setup, and "constrained" limits that depend on dynamics and also on the constraints imposed by a particular experimental setup. Methods for calculation of these limits are presented and applied to the benchmark F + H2 reaction. The variations of the maximum and minimum reactivity one can obtain are analysed in terms of reaction mechanisms and steric constraints. Tables listing the minimum and maximum values of angular momentum polarisation moments of rank up to 4, and integer and half-integer quantum numbers up to 5, are also presented.  相似文献   
70.
This article presents a quasiclassical trajectory method for the calculation of cumulative reaction probabilities by sampling of the helicity quantum number of the reagents (k). The method is applied to the D + H(2) reaction at various total angular momentum (J) values, and the helicity-resolved quasiclassical cumulative reaction probabilities are compared to their quantum mechanical counterparts. The agreement between the two sets of results is fairly good. In particular, k-dependent, J-independent reaction thresholds found with quantum methods are reproduced by the quasiclassical calculations. The shift of these thresholds with increasing k, which has been previously attributed to the quantum bottleneck states taking part in the reaction, is revisited and discussed also in terms of the reaction stereodynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号