首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5540篇
  免费   172篇
  国内免费   30篇
化学   4337篇
晶体学   31篇
力学   123篇
数学   629篇
物理学   622篇
  2023年   16篇
  2022年   35篇
  2021年   55篇
  2020年   72篇
  2019年   97篇
  2018年   54篇
  2017年   44篇
  2016年   124篇
  2015年   110篇
  2014年   119篇
  2013年   228篇
  2012年   298篇
  2011年   395篇
  2010年   196篇
  2009年   171篇
  2008年   354篇
  2007年   351篇
  2006年   348篇
  2005年   350篇
  2004年   317篇
  2003年   240篇
  2002年   259篇
  2001年   88篇
  2000年   89篇
  1999年   71篇
  1998年   70篇
  1997年   79篇
  1996年   122篇
  1995年   64篇
  1994年   57篇
  1993年   57篇
  1992年   64篇
  1991年   50篇
  1990年   38篇
  1989年   35篇
  1988年   30篇
  1987年   35篇
  1986年   22篇
  1985年   49篇
  1984年   54篇
  1983年   31篇
  1982年   43篇
  1981年   46篇
  1980年   49篇
  1979年   32篇
  1978年   51篇
  1977年   26篇
  1976年   34篇
  1975年   32篇
  1974年   20篇
排序方式: 共有5742条查询结果,搜索用时 31 毫秒
181.
According to the earlier published synthesis of the C‐terminal nonapeptide of Trichovirin I 1B, Z‐Ser(tBu)‐Val‐Aib‐Pro‐Aib‐Leu‐Aib‐Pro‐Leuol ( 5 ), the complete tetradecapeptide Z‐Aib‐Asn(Trt)‐Leu‐Aib‐Pro‐Ser(tBu)‐Val‐Aib‐Pro‐Aib‐Leu‐Aib‐Pro‐Leuol ( 11b ), a protected Trichovirin I 1B, has now been prepared by means of the ‘azirine/oxazolone method’. With the exception of the N‐terminal Aib(1), all Aib residues were introduced by the coupling of the corresponding amino or peptide acids with 2,2‐dimethyl‐2H‐azirine‐3‐(N‐methyl‐N‐phenylamine) ( 1a ) and methyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate ( 3a ) as the Aib and Aib‐Pro synthons, respectively. Single crystals of two segments, i.e., the N‐terminal hexapeptide Z‐Aib‐Asn(Trt)‐Leu‐Aib‐Pro‐Ser(tBu)‐OMe ( 23 ) and the C‐terminal octapeptide Z‐Val‐Aib‐Pro‐Aib‐Leu‐Aib‐Pro‐Leuol ( 17 ), were obtained and their structures have been established by X‐ray crystallography. Following the same strategy, the C‐terminal nonapeptide of Trichovirin I 4A, Z‐Ala‐Val‐Aib‐Pro‐Aib‐Leu‐Aib‐Pro‐Leuol ( 26 ), was also synthesized and characterized by X‐ray crystallography.  相似文献   
182.
It was in the 1980 s that the first papers in which the use of either combinatorial methods or microwave heating in organic chemistry were published. Unlike combinatorial chemistry, which quite readily became an accepted method, particularly in the pharmaceutical industry, it is only now that microwave heating is truly gaining acceptance. Our aim in this review is to attempt to rationalize this slow acceptance and to show the benefits to be gained by employing microwave heating in tandem with combinatorial chemistry. We will also give a number of examples of successful applications.  相似文献   
183.
Five new mixed diimine 1,1'-dithiolate or dithiocarbamate ligand complexes of the form [Rh(bpy)2(SS)][PF6]n, where bpy = 2,2'-bipyridine and SS = various substituted dialkyldithiocarbamates or 1,1'-dithiolates, were synthesized from cis-[Rh(bpy)2(OTf)2][OTf]. The triflate ligands are easily displaced by other ligands and allow these syntheses to proceed in high yields (80-90% overall) under relatively mild reaction conditions and to give high purity products. Electrochemistry shows irreversible two-electron reduction of Rh(III) to Rh(I) and a concomitant loss of one bipyridine ligand; this is followed by reversible one-electron reduction of the remaining 2,2'-bipyridine ligand. The electronic characterizations of these complexes are consistent with significant delocalization of the sulfur electron density onto the empty metal d orbitals. The 1,1'-dithiolate ligands induce larger red shifts in the absorption and emission spectra than the dithiocarbamates as the 1,1'-dithiolates have a more extensive conjugation system.  相似文献   
184.
We have obtained three layered hybrid materials from the hydrothermal reaction of 4-cyclohexene-1,2-dicarboxylic acid with Co and Mn salts: Co(C(8)H(8)O(4))[1], Mn(H(2)O)(C(8)H(8)O(4))[2], and Mn(4)(H(2)O)(C(8)H(8)O(4))(4).0.3(H(2)O)[3]. The structures for all materials were solved by single-crystal XRD ([1]P1, a=4.805(2) A, b=6.650(3) A, c=12.960(6) A, alpha=98.285(7) degrees, beta=98.986(7) degrees, gamma=95.689(7) degrees, V= 401.6(3) A(3), R(1)= 0.0438; [2] P2(1)/c, a=11.151(2) A, b=11.330(2) A, c=7.6560(15) A, beta=108.813(3) degrees , V=915.6(3) A(3), R(1)=0.0412; [3] P1, a= 11.412(3) A, b=12.136(4) A, c=13.809(4) A, alpha=104.703(6) degrees, beta=103.207(6) degrees, gamma=92.468(5) degrees, V=1790.6(9) A(3), R(1)=0.1056). While all three structures are two-dimensional overall, the metal-oxygen-metal dimensionality within the layers varies from isolated metal atoms in the case of [1] to 1D ribbons of vertex sharing MnO(6) octahedra [2] and 2D arrays of edge- and vertex-sharing polyhedra in [3].  相似文献   
185.
This study summarises the rheological behaviour of emulsion bitumen drops in the presence of aqueous solutions of de-ionised or process water (DIW or PW) containing montmorillonite clays (M) and/or calcium ions (Ca++). The presence of calcium ions and montmorillonite clays resulted in the plastic behaviour of bitumen drops. In a DIW+M+Ca++ system, increasing temperature and calcium ion concentration resulted in an increase in the number and degree of plastic bitumen drops. In the presence of considerable amounts of Ca++ ions and/or at higher experimental temperature, bitumen drops in a PW+M system exhibited no significant overall plasticity of their surfaces. Both calcium and sodium ions contained in process water compete with each other to occupy the montmorillonite clay surface. At the pH value of process water (pH congruent with8), increasing the temperature did not change the value of bitumen droplet zeta potential. Stability of bitumen-in-water emulsions at 22 degrees C showed that bitumen droplets coalesced upon contact in the DIW+M system. The addition of calcium ions (Ca++) led to the inhibition of coagulation and coalescence of bitumen droplets, which may indicate the formation of CaM aggregates at the bitumen-water interface.  相似文献   
186.
The ground-state rotational spectra of eight isotopomers of a complex formed by water and dibromine in the gas phase were observed by pulsed-jet, Fourier transform microwave spectroscopy. The spectroscopic constants B(0), C(0), delta(J), delta(JK), chi(aa)(Br(x)) (x=i for inner, o for outer), [chi(bb)(Br(x))-chi(cc)(Br(x))] and M(bb)(Br(x)) were determined for H(2)O...(79)Br(79)Br, H(2)O...(81)Br(79)Br, H(2)O...(79)Br(81)Br, H(2)O...(81)Br(81)Br, D(2)O...(79)Br(81)Br and D(2)O...(81)Br(81)Br. For the isotopomers HDO...(79)Br(81)Br and HDO...(81)Br(81)Br, only (B(0) + C(0))/2, delta(J), the chi(aa)(Br(x)) and M(bb)(Br(x)) were determinable. The spectroscopic constants were interpreted on the basis of several models of the complex to give information about its geometry, binding strength and the extent of electronic rearrangement on complex formation. The molecule H(2)O...Br(2) has C(s) symmetry with a pyramidal configuration at O. The zero-point effective quantities r(O...Br(i))=2.8506(1) A and phi(0)=46.8(1), where phi is the angle between the C(2) axis of H(2)O and the O...Br-Br internuclear axis, were obtained under the assumption of monomer geometries unchanged by complexation. Ab initio calculations, carried out at the aug-cc-pVDZ/MP2 level of theory, gave the equilibrium values r(e)(O...Br(i))=2.7908 A and phi(e)=45.7 degrees and confirmed the collinearity of the O...Br-Br nuclei. The potential energy function V(phi), also determined ab initio, showed that the wavenumber required for inversion of the configuration at O in the zero-point state is only 9 cm(-1). By interpreting the Br nuclear quadrupole coupling constants, the fractions delta(O-->Br(i))=0.004(5) and delta (Br(i)-->Br(o))=0.050(2) of an electron were determined to be transferred from O to Br(i) and Br(i) to Br(o), respectively, when the complex is formed. The complex is relatively weak, as indicated by the small value k(sigma)=9.8(2) N m(-1) of the intermolecular stretching force constant obtained from delta(J). A comparison of the properties, similarly determined, of H(2)O...F(2), H(2)O...Cl(2), H(2)O...Br(2), H(2)O...BrCl, H(2)O...ClF and H(2)O...ICl is presented.  相似文献   
187.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   
188.
The room-temperature crystal structure of the brownmillerite SrCaMnGaO5+δ (δ=0.035) has been refined from neutron powder diffraction data; space group Ima2, a=15.7817(6), b=5.4925(2), c=5.3196(2)> Å. Mn and Ga occupy 99.0(2)% of the 6- and 4-coordinate sites, respectively. A combination of magnetometry, neutron diffraction and μSR spectroscopy has shown that the compound orders magnetically at 180 K, and that the low-temperature phase has a G-type antiferromagnetic structure, with an ordered magnetic moment of 3.30(2) μB per Mn at 2 K. Displaced hysteresis loops provide evidence that the atomic moment has an additional, glassy component. Magnetometry shows that significant short-range magnetic interactions persist above 180 K, and μSR that the spin fluctuations are thermally activated in this temperature region. The compound is an electrical insulator which at 159 K shows an unusually large magnetoresistance of 85% in 6 T, increasing to 90% in 13 T.  相似文献   
189.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   
190.
[reaction: see text]. A convergent total synthesis of the methyl ester of zincophorin, an ionophore antibiotic, has been realized relying on a diastereoselective titanium-mediated aldol coupling between the C1-C12 and C13-C25 subunits. The latter fragment was prepared by using a Carroll-Claisen rearrangement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号