首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1147篇
  免费   126篇
化学   1060篇
晶体学   2篇
力学   15篇
数学   64篇
物理学   132篇
  2023年   21篇
  2022年   18篇
  2021年   40篇
  2020年   48篇
  2019年   54篇
  2018年   39篇
  2017年   15篇
  2016年   62篇
  2015年   73篇
  2014年   73篇
  2013年   82篇
  2012年   109篇
  2011年   106篇
  2010年   53篇
  2009年   49篇
  2008年   67篇
  2007年   61篇
  2006年   54篇
  2005年   36篇
  2004年   27篇
  2003年   23篇
  2002年   27篇
  2001年   13篇
  2000年   18篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   2篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1991年   4篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1986年   6篇
  1985年   4篇
  1982年   2篇
  1981年   2篇
  1977年   2篇
  1959年   2篇
  1958年   1篇
  1957年   1篇
  1943年   1篇
  1938年   2篇
  1937年   2篇
  1936年   3篇
  1931年   1篇
  1925年   1篇
  1914年   1篇
排序方式: 共有1273条查询结果,搜索用时 62 毫秒
991.
The triangular clusters [Zn3Cp*3]+ and [Zn2CuCp*3] were obtained by addition of the in situ generated, electrophilic, and isolobal species [ZnCp*]+ and [CuCp*] to Carmona’s compound, [Cp*Zn? ZnCp*], without splitting the Zn? Zn bond. The choice of non‐coordinating fluoroaromatic solvents was crucial. The bonding situations of the all‐hydrocarbon‐ligand‐protected clusters were investigated by quantum chemical calculations revealing a high degree of σ‐aromaticity similar to the triatomic hydrogen ion [H3]+. The new species serve as molecular building units of CunZnm nanobrass clusters as indicated by LIFDI mass spectrometry.  相似文献   
992.
Gadolinium(III)‐based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.  相似文献   
993.
Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added 19F‐enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The 19F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell‐culture systems, as well as small model organisms.  相似文献   
994.
995.
To stop the coronavirus spread, new inactivation approaches are being sought that can also be applied in the presence of humans or even on humans. Here, we investigate the effect of visible violet light with a wavelength of 405 nm on the coronavirus surrogate phi6 in two aqueous solutions that are free of photosensitizers. A dose of 1300 J cm?2 of 405 nm irradiation reduces the phi6 plaque‐forming unit concentration by three log‐levels. The next step should be similar visible light photoinactivation investigations on coronaviruses, which cannot be performed in our lab.  相似文献   
996.
A nonlinear turbulent stress relationship, based on an explicit algebraic Reynolds stress closure, is compared against experimental data obtained in a swirl-supported, light-duty engine motored at constant speed. The model relationship is applied to measured mean velocity gradients and turbulence scales, and the predictions compared against the measured shear stress and normal stress anisotropy. Significant improvement over the linear stress relationship typically used in two-equation turbulence models is observed. Conditions under which the model predictions are poor are identified and the reasons for the poor performance discussed.  相似文献   
997.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   
998.
Computational assistance gains increasing importance in the field of medical surgery. As an example, in the present work, we look at functional endoscopic sinus surgery. Simulations for surgery training programs or online support during surgeries require simulation tools which are characterized by a preferably short simulation time (real time) and a high degree of accuracy. The nonlinear finite element method is most suitable to yield qualitatively and quantitatively reliable results. The problem is, however, to achieve such results in real time. One possibility to reach both, short computational time and high accuracy, is to combine model reduction and finite element techniques. Therefore, in this paper, various projection-based model reduction methods are discussed and compared with respect to their possible application in biomechanics. The modal basis, the load-dependent Ritz and the proper orthogonal decomposition (POD) method were used to reduce the model of a cube under compression considering different material nonlinearities and large deformations. The POD method led to the lowest errors in displacement and stress while providing the largest reduction in CPU time. Further, the influence of different POD parameters was investigated. According to this study, the snapshots upon which the POD is based had to agree as closely as possible with the original deformation of the reduced system. The POD method applied to the finite element model of an inferior turbinate led to an adequate accuracy for surgery simulations within less than one-third of the computational time of the unreduced finite element simulation.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号