首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   13篇
  国内免费   1篇
化学   388篇
晶体学   7篇
力学   7篇
数学   48篇
物理学   148篇
  2022年   6篇
  2020年   11篇
  2019年   15篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   8篇
  2013年   23篇
  2012年   23篇
  2011年   31篇
  2010年   17篇
  2009年   12篇
  2008年   23篇
  2007年   17篇
  2006年   19篇
  2005年   14篇
  2004年   21篇
  2003年   19篇
  2002年   19篇
  2001年   20篇
  2000年   9篇
  1999年   12篇
  1998年   6篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   6篇
  1992年   7篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   15篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   5篇
  1979年   10篇
  1978年   6篇
  1976年   9篇
  1975年   6篇
  1973年   5篇
  1969年   6篇
  1968年   5篇
  1967年   6篇
  1933年   4篇
  1931年   5篇
排序方式: 共有598条查询结果,搜索用时 31 毫秒
91.
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2.−(H2O)n is relevant for electrochemical carbon dioxide functionalization. CO2.−(H2O)n (n=2–61) is investigated by using infrared action spectroscopy in the 1150–2220 cm−1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm−1, which is assigned to the symmetric C−O stretching vibration νs. It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C−O vibration νas is strongly coupled with the water bending mode ν2, causing a broad feature at approximately 1650 cm−1. For larger clusters, an additional broad and weak band appears above 1900 cm−1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2.− with the hydrogen-bonding network.  相似文献   
92.
Thin cuprous oxide films have been prepared by chemical vapor deposition (pulsed spray evaporation-chemical vapor deposition) method without post-treatment. The synthesis ofcuprous oxide was produced by applying a water strategy effect. Then, the effect of water on the morphology, topology, structure, optical properties and surface composition of the obtained films has been comprehensively investigated. The results reveal that a pure phase of Cu2O was obtained. The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV. This finding was mainly related to the decrease of crystallite size due to the effect of water. The topology analyses, by using atomic force microscope, also revealed that surface roughness decreases with water addition, namely more uniform covered surface. Moreover, theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface. Formation mechanism of the Cu2O thin film was also suggested and discussed.  相似文献   
93.
The analysis of biological systems requires mathematical tools that represent their complexity from the molecular scale up to the tissue level. The formation of cell aggregates by chemotaxis is investigated using Delaunay object dynamics. It is found that when cells migrate fast such that the chemokine distribution is far from equilibrium, the details of the chemokine receptor dynamics can induce an internalization driven instability of cell aggregates. The instability occurs in a parameter regime relevant for lymphoid tissue and is similar to ectopic lymphoid structures.  相似文献   
94.
Reversible‐addition fragmentation‐transfer (RAFT) polymerization of acrylonitrile (AN) was performed with 2‐(2‐cyano‐2‐propyl‐dodecyl)trithiocarbonate as RAFT agent and azobis(isobutyronitrile) as initiator. Linear polyacrylonitrile (Mn = 133,000 g/mol, PDI = 1.34) was prepared within 7 h in 86% isolated yield. High‐yield copolymerization with methyl methacrylate (MMA) was performed and copolymerization parameters were determined according to Kelen and Tüdös at 90 °C in ethylene carbonate yielding rAN = 0.2 and rMMA = 0.42. The molecular weights, polydispersity indices (PDIs), and MMA content of the copolymer were adjusted in a way that precursor fibers could be prepared via wet spinning. These precursor fibers had round cross‐sections and a dense morphology, showing tenacities of 40–50 cN/tex and elastic moduli of 900–1000 cN/tex at a fineness of 1 dtex and an elongation of 13–17%. Precursor fibers were oxidatively stabilized and then carbonized at different temperatures. A maximum tensile strength of 2.5 GPa was reached at 1350 °C. Thermal analysis, infrared and Raman spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and tensile testing were used to characterize the resulting carbon fibers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1322–1333  相似文献   
95.
96.
Single nucleotide polymorphisms (SNPs) in odorant receptor genes may influence the protein sequence and consequently also the function of the receptors. An analysis of the HapMap data for human OR3A1 was performed and provided evidence that genetic differences subject to ancestry and gender can be recognized. A genomic comparison of individuals shows the diversity of odorant receptor genes and therefore potentially the variety of the sense of smell. At this time, two complete human genomes are available in public domain, which we used for this purpose.  相似文献   
97.
Single nucleotide polymorphisms (SNPs) in odorant receptor genes may influence the protein sequence and consequently also the function of the receptors. An analysis of the HapMap data for human OR3A1 was performed and provided evidence that genetic differences subject to ancestry and gender can be recognized. A genomic comparison of individuals shows the diversity of odorant receptor genes and therefore potentially the variety of the sense of smell. At this time, two complete human genomes are available in public domain, which we used for this purpose. Correspondence: Anton Beyer, Institute of Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria.  相似文献   
98.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   
99.
The reaction of the pentapeptide Ac-His1-Ala2-Ala3-Ala4-His5-NH2 (AcHAAAHNH2) (1) with [Pd(en)(ONO2)2] (en = NH2CH2CH2NH2) in either DMF-d(7) or H2O:D2O (90%:10%) gave three linkage isomers of [Pd(en)(AcHAAAHNH2)](2+) (2), 2a, 2b, and 2c, which differ only in which pair of imidazole nitrogen atoms bind to Pd. In the most abundant isomer, 2a, Pd is bound by N1 from each of the two imidazole rings. In the minor isomers 2b and 2c, Pd is bound by N1(His1) and N3(His5) and by N3(His1) and N1(His5), respectively. The reactions of [Pd(en)(ONO2)2] with the N-methylated peptides Ac-(N3-MeHis)-Ala-Ala-Ala-(N3-MeHis)-NH2 (AcH*AAAH*NH2) (3), Ac-(N3-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(*)AAAH(#)NH2) (4), and Ac-(N1-MeHis)-Ala-Ala-Ala-(N3-Me-His)-NH2 (AcH(#)AAAH(*)NH2) (5) each gave a single species [Pd(en)(peptide)](2+) in N,N-dimethylformamide (DMF) or aqueous solution, 7, 8, and 9, respectively, with Pd bound by the two nonmethylated imidazole nitrogen atoms in each case. These complexes were analogous to 2a, 2b, and 2c, respectively. Ac-(N1-MeHis)-Ala-Ala-Ala-(N1-MeHis)-NH2 (AcH(#)AAAH(#)NH2) (6) with [Pd(en)(ONO2)2] in DMF slowly gave a single product, [Pd(en)(AcH(#)AAAH(#)NH2)](2+) (10), in which Pd was bound by the N3 of each imidazole ring. The corresponding linkage isomer of 2 was not observed. Complex 10 was also the major product in aqueous solution, but other species were also present. All compounds were exhaustively characterized in solution by multinuclear 1D ((1)H , (13)C, and, with (15)N-labeled ethylenediamine, (15)N) and 2D (correlation spectroscopy, total correlation spectroscopy, transverse rotating-frame Overhauser effect spectroscopy (T-ROESY), heteronuclear multiple-bond correlation, and heteronuclear single quantum coherence) NMR spectra, circular dichroism (CD) spectra, electrospray mass spectroscopy, and reversed-phase high-performance liquid chromatography. ROESY spectra were used to calculate the structure of 2a, which contained a single turn of a peptide alpha helix in both DMF and water, the helix being better defined in DMF. The Pd(en)(2+) moiety was not used in structure calculations, but its location and coordination by one imidazole N1 from each histidine to form a 22-membered metallocycle were unambiguously established. Convergence of the structures was greatest when calculated with two hydrogen-bond constraints (Ala4 peptide NH...OC acetyl and His5 peptide NH...OC-His1) that were indicated by the low temperature dependence of these NH chemical shifts. Vicinal HN-CHalpha coupling constants and chemical shifts of alpha-H atoms were also consistent with a helical conformation. Similar long-range ROE correlations were observed for [Pd(en)(AcH(*)AAAH(*)NH2)](2+) (7), which displayed a CD spectrum in aqueous solution that suggested the presence of some helicity. Long-range ROE correlations were not observed for 8, 9, or 10, but a combination of NMR data and CD spectroscopy was interpreted in terms of the conformational behavior of the coordinated pentapeptide. Only for the linkage isomer [Pd(en)(AcH(*)AAAH(#)NH2)](2+) (8) was there evidence of a contribution from a helical conformation. The data for 8 were interpreted as interconversion between the helix and random coil conformations. Zn(2+) with peptides gave broad NMR peaks attributed to lability of this metal ion, while reactions of cis-[Pt(NH3)2(ONO2)2] were slow, giving a complex mixture of products rather than the macrochelate ring observed with Pd(en)(2+). In summary, these studies indicate that Pd(en)(2+) coordinates to histidine with similar preference for each of the two imidazole nitrogens, enabling the formation of up to four linkage isomers in its complexes with pentapeptides His-xxx-His. Only the N1-N1 linkage isomer that forms a 22-membered macrochelate ring is able to induce an alpha-helical peptide conformation, whereas the 20- and 21-membered rings of linkage isomers do not. This suggests that linkage isomeric mixtures may compromise histidine coordination to metal ions and reduce alpha-helicity.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号