首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   0篇
化学   96篇
晶体学   1篇
力学   5篇
数学   19篇
物理学   9篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2014年   3篇
  2013年   5篇
  2012年   19篇
  2011年   19篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
81.
A bubble cell capillary classically used to extend the optical path length for UV–vis detection is employed here to trap magnetic beads. With this system, a large amount of beads can be captured without inducing a strong pressure drop, as it is the case with magnetic beads trapped in a standard capillary, thereby having less effect on the experimental conditions. Using numerical simulations and microscopic visualizations, the capture of beads inside a bubble cell was investigated with two magnet configurations. Pressure-driven and electro-osmotic flow velocities were measured for different amounts of protein-A-coated beads or C18-functionalized beads (RPC-18). Solid-phase extraction of a model antibody on protein-A beads and preconcentration of fluorescein on RPC-18 beads were performed as proof of concept experiments.  相似文献   
82.
ABSTRACT

The stored energy and activation energy for recrystallization were investigated for a Cu-Ni-Si alloy after high-pressure torsion processing for N?=?½, 1, 5 and 10 turns at room temperature. The contributions of geometrically necessary dislocations (GNDs), statistically stored dislocations (SSDs) and vacancies to the stored energy were calculated through the Vickers microhardness measurements, kernel average misorientation (KAM) measurements and an analysis by differential scanning calorimetry (DSC). The results show that the total stored energy decreases rapidly after equivalent strain of εeq?~?9 and then saturates through εeq?~?86 at ~70 J/mol. Concurrently, the local stored energy in GNDs and SSDs was found to depend strongly on the radial distance from the centre of the disc and increase with increasing equivalent strain at εeq?~?16 and saturate with further straining. Accordingly, the results indicate that the GNDs and vacancies are responsible for the high stored energy in the initial stage of deformation at equivalent strain range of εeq?=?8.6–16 and thereafter their contribution decreases slightly due to the occurrence of dynamic recrystallization and the formation of fine grains. At the same time, the contribution of the SSDs is similar to that of the GNDs only in high strain deformation as at εeq?=?49.3 to accommodate the deformation process. An activation energy for recrystallization was estimated in the range of ~?89.7–98.7 kJ/mol, thereby suggesting poor thermal stability.  相似文献   
83.
We are interested here in describing the linear response of a highly rotating fluid to some surface stress tensor, which admits fast time oscillations and may be resonant with the Coriolis force. In addition to the usual Ekman layer, we exhibit another - much larger - boundary layer, and we prove that for large times, the effect of the surface stress may no longer be localized in the vicinity of the surface. From a mathematical point of view, the main novelty here is to introduce some systematic approach for the study of boundary effects.  相似文献   
84.
85.
We have studied the self-diffusion properties of butyl-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide ([BMIM][TFSI]) + water system. The self-diffusion coefficients of cations, anions, and water molecules were determined by pulsed field gradient NMR. These measures were performed with increased water quantity up to saturation (from 0.3 to 30 mol %). Unexpected variations have been observed. The self-diffusion coefficient of every species increases with the quantity of water but not in the same order of magnitude. Whereas very similar evolutions are observed for the anion and cation, the increase is 25 times greater for water molecules. We interpret our data by the existence of phase separation at microscopic scale.  相似文献   
86.
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.  相似文献   
87.
We study the limit as ε → 0 of the solutions of the equation . This problem has already been addressed in a previous article in the case of well-prepared initial data, i.e. when the microscopic profile of the solution is adapted to the medium at time t = 0. Here, we prove that when the initial data is not well prepared, there is an initial layer during which the solution adapts itself to match the profile dictated by the environment. The typical size of the initial layer is of order ε. The proof relies strongly on the parabolic form of the equation; in particular, no condition of nonlinearity on A is required.  相似文献   
88.
A tetranuclear complex, [Ni(4)], with a cubane-like structure synthesized from hexafluoroacetylacetone gives, after drying at high temperature and treatment with pyridine, a heptanuclear nickel(II) complex, [Ni(7)]. The crystal structures of both compounds have been determined by single-crystal X-ray diffraction. Their magnetic properties have been studied by SQUID and μ-SQUID magnetometry as well as by high-frequency EPR spectroscopy (HF-EPR). For [Ni(4)], the temperature dependence of the magnetic susceptibility can be fitted by taking into account strong Ni···Ni ferromagnetic interactions which lead to an S = 4 ground-state spin, in good agreement with the HF-EPR study. For [Ni(7)], the temperature dependence of the magnetic susceptibility shows that the Ni···Ni ferromagnetic interactions are kept within the metal core. However, it was not possible to fit this with a clear set of parameters, and the ground-state spin was undetermined. The field dependence of the magnetization indicates an S = 7 ground-state spin at high field. In contrast, the temperature dependence of the magnetic susceptibility indicates a ground-state spin of S = 6 or even S = 5. These results agree with complicated high-frequency EPR spectra which have been ascribed to the superposition of signals from the ground spin multiplet and from an excited spin multiplet very close in energy, with the excited state having a larger S value than the ground state. Very low temperature studies show that only the heptanuclear complex behaves as a single-molecule magnet.  相似文献   
89.
Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.  相似文献   
90.
Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号