首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32213篇
  免费   4034篇
  国内免费   2663篇
化学   23359篇
晶体学   350篇
力学   1538篇
综合类   239篇
数学   3585篇
物理学   9839篇
  2024年   88篇
  2023年   598篇
  2022年   1227篇
  2021年   1305篇
  2020年   1219篇
  2019年   1140篇
  2018年   950篇
  2017年   890篇
  2016年   1415篇
  2015年   1266篇
  2014年   1607篇
  2013年   2159篇
  2012年   2605篇
  2011年   2656篇
  2010年   1815篇
  2009年   1663篇
  2008年   2010篇
  2007年   1856篇
  2006年   1762篇
  2005年   1407篇
  2004年   1148篇
  2003年   923篇
  2002年   806篇
  2001年   615篇
  2000年   579篇
  1999年   638篇
  1998年   542篇
  1997年   471篇
  1996年   491篇
  1995年   426篇
  1994年   391篇
  1993年   363篇
  1992年   301篇
  1991年   262篇
  1990年   259篇
  1989年   191篇
  1988年   140篇
  1987年   106篇
  1986年   125篇
  1985年   110篇
  1984年   61篇
  1983年   56篇
  1982年   66篇
  1981年   42篇
  1980年   30篇
  1979年   18篇
  1978年   6篇
  1977年   9篇
  1976年   10篇
  1932年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA. Cytotoxicity studies revealed that the compound did not exhibit toxicity toward human dermal keratinocytes, which supported the potential application of 2Cl3HP in clinical use. The study also attempted to establish the possible equilibria occurring in the aqueous solution and, using both theoretical and experimental methods, clearly showed the hydrophilic nature of the compound. The experimental and theoretical results of the study confirmed the quality of the compound, as well as the appropriateness of the selected set of methods for similar research.  相似文献   
102.
The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22’s ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T. afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.  相似文献   
103.
Leukemia is caused by the malignant clonal expansion of hematopoietic stem cells, and in adults, the most common type of leukemia is acute myeloid leukemia (AML). Autophagy inhibitors are often used in preclinical and clinical models in leukemia therapy. However, clinically available autophagy inhibitors and their efficacy are very limited. More effective and safer autophagy inhibitors are urgently needed for leukemia therapy. In a previous study, we showed that ΔA146Ply, a mutant of pneumolysin that lacks hemolytic activity, inhibited autophagy of triple-negative breast cancer cells by activating mannose receptor (MR) and toll-like receptor 4 (TLR4) and that tumor-bearing mice tolerated ΔA146Ply well. Whether this agent affects AML cells expressing TLR4 and MR and the related mechanisms remain to be determined. In this study, we found that ΔA146Ply inhibited autophagy and induced apoptosis in AML cells. A mechanistic study showed that ΔA146Ply inhibited autophagy by activating mammalian target of rapamycin signaling and induced apoptosis by inhibiting autophagy. ΔA146Ply also inhibited autophagy and induced apoptosis in a mouse model of AML. Furthermore, the combination of ΔA146Ply and chloroquine synergistically inhibited autophagy and induced apoptosis in vitro and in vivo. Overall, this study provides an alternative effective autophagy inhibitor that may be used for leukemia therapy.Subject terms: Translational research, Acute myeloid leukaemia  相似文献   
104.
New derivatives obtained by the combination of unique 1,2,4,5-tetrazine and 4H-1,2,4-triazole rings have great application potential in many fields. Therefore, two synthetic few-step methodologies, which make use of commercially available 4-cyanobenzoic acid (method A) and ethyl diazoacetate (method B), were applied to produce two groups of the aforementioned heterocyclic conjugates. In both cases, the target compounds were obtained in various combinations, by introducing electron-donating or electron-withdrawing substituents into the terminal rings, together with aromatic or aliphatic substituents on the triazole nitrogen atom. Synthesis of such designed systems made it possible to analyze the influence of individual elements of the structure on the reaction course, as well as the absorption and emission properties. The structure of all products was confirmed by conventional spectroscopic methods, and their luminescent properties were also determined.  相似文献   
105.
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host–guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.

Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and tetrahydrofuran by using nonporous adaptive crystals of per-ethyl pillar[6]arene.

Pyrrolidine is an important feedstock in the chemical industry that has been widely used in the production of food, pesticides, daily chemicals, coatings, textiles, and other materials.1 Particularly, pyrrolidine is a raw material for organic synthesis of medicines such as buflomedil, pyrrocaine, and prolintane.2 Moreover, pyrrolidine is also used as a solvent in the semi-synthetic process of simvastatin, one of the best-selling cardiovascular drugs.3 In the chemical industry, there are many preparation methods for pyrrolidine. The most common way to obtain pyrrolidine is the gas-phase catalytic method using tetrahydrofuran (THF) and ammonia as raw materials;4 this is carried out at high temperature under catalysis by solid acids. However, separating pyrrolidine from the crude product is difficult because of similar molecular weights and structures between pyrrolidine (b.p. 360 K and saturated vapor pressure = 1.8 kPa at 298 K) and THF (b.p. 339 K and saturated vapor pressure = 19.3 kPa at 298 K), which result in complicated processes and large energy consumption.5 Therefore, it is worthwhile to find energy-efficient and simple methods to separate pyrrolidine from THF.Many techniques and materials, including porous zeolites, metal–organic frameworks (MOFs), and porous polymers, have facilitated energy-efficient separations of important petrochemicals and feedstocks, including THF and pyrrolidine.6,7 However, some drawbacks of these materials cannot be ignored.8 For example, the relatively low thermal and moisture stabilities of MOFs limit their practical applications. Therefore, the development of new materials with satisfactory chemical and thermal stabilities for pyrrolidine/THF separation is of high significance.In the past decade, pillararenes have been widely studied in supramolecular chemistry.9 Owing to their unique pillar structures and diverse host–guest recognitions, pillararenes have been used in the construction of numerous supramolecular systems.10 Recently, nonporous adaptive crystals (NACs) of macrocycles, which have shown extraordinary performance in adsorption and separation, have been developed by our group as a new type of adsorption and separation materials.11 Unlike MOFs, covalent-organic frameworks (COFs), and other materials with pre-existing pores, NACs do not have “pores“ in the guest-free form, whereas they adsorb guest vapors through cavities of macrocycles and spaces between macrocycles. NACs have been applied in separations of many significant chemicals such as alkane isomers, aromatics, and halohydrocarbon isomers.12 However, such materials have never been used to separate pyrrolidine and THF. Herein, we utilized pillararene crystals as a separation material and realized the selective separation of pyrrolidine from a mixture of pyrrolidine and THF. We found that nonporous crystals of per-ethyl pillar[6]arene (EtP6) exhibited a shape-sorting ability at the molecular level towards pyrrolidine with an excellent preference, while crystals of per-ethyl pillar[5]arene (EtP5) did not (Scheme 1). In-depth investigations revealed that the separation was driven by the host–guest complexation between pyrrolidine and EtP6, which resulted in the formation of a more stable structure upon adsorption of pyrrolidine vapor in the crystalline state. EtP6 crystals can also adsorb THF. However, when these two chemicals simultaneously exist as the vapor of a 50 : 50 (v/v) mixture, EtP6 prefers pyrrolidine as an adsorption target. Compared with previously reported NAC-based separation, this separation took place rapidly. 95% purity was achieved in 15 min, and the purity increased to 99.9% after 2 h of separation. Moreover, pyrrolidine was removed upon heating, along with the structural transformation of EtP6 back to its original state, endowing EtP6 with excellent recyclability.Open in a separate windowScheme 1Chemical structures and cartoon representations: (a) EtP5 and EtP6; (b) THF and pyrrolidine.EtP5 and EtP6 were prepared as previously described and then a pretreatment process was carried out to obtain guest-free EtP5 and EtP6 (Fig. S1–S4†).13 According to powder X-ray diffraction (PXRD) patterns, activated EtP5 and EtP6 (denoted as EtP5α and EtP6β, respectively) were crystalline, and the patterns matched previous reports (Fig. S5 and S6).14 Studies from our group indicated that EtP5α and EtP6β crystals were nonporous, presumably due to their dense packing modes.We first investigated the adsorption capabilities of EtP5α and EtP6β towards pyrrolidine and THF vapors. Based on time-dependent solid–vapor adsorption procedures, both EtP5α and EtP6β showed good ability to adsorb pyrrolidine and THF vapors. As shown in Fig. 1a, the adsorption amount of THF in EtP5α was higher than that of pyrrolidine. It took 6 hours for EtP5α to reach saturation points for adsorption of both pyrrolidine and THF vapors. The final storage of THF in EtP5α was 2 : 1 (molar ratio to the host), whereas the storage of pyrrolidine was 1 : 1. It seemed that the THF vapor was favored to occupy EtP5α, which was ascribed to the relatively lower boiling point of THF. A similar phenomenon was found for EtP6β. Time-dependent solid–vapor adsorption experiments for pyrrolidine demonstrated that it took just 1 hour to reach the saturation point, while it took 4 hours for the THF vapor (Fig. 1b). The adsorption amount of THF vapor was twice that of pyrrolidine. 1H NMR spectra and thermogravimetric analyses (TGA) further confirmed the adsorption and storage of THF and pyrrolidine in both hosts (Fig. S7–S16†). Meanwhile, in the desorption process, adsorbed pyrrolidine and THF in EtP6β were easily released under reduced pressure and heating. Based on these data, it was clear that pyrrolidine could be adsorbed rapidly by both EtP5α and EtP6β in molar ratios = 1 : 1, while THF could be captured in a relatively slow process. Structural changes after adsorption of these two vapors were analyzed via PXRD experiments, in which varying degrees of changes before and after adsorption were observed, evidencing the appearance of new crystal structures (Fig. 1c and d). Nevertheless, only slight differences were observed in the PXRD patterns after the adsorption of THF or pyrrolidine, which might be ascribed to the structural similarity of the two molecules.Open in a separate windowFig. 1Time-dependent solid–vapor adsorption plots of (a) EtP5α and (b) EtP6β for single-component pyrrolidine and THF vapors. PXRD patterns of (c) EtP5α and (d) EtP6β: (I) original activated crystals; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor.To study the mechanism of adsorption, guest-loaded single crystals were obtained by slowly evaporating either THF or pyrrolidine solutions of pillararenes (Tables S2 and S3). In the crystal structure of THF-loaded EtP5 (2THF@EtP5, Fig. 2a and S17),11a two THF molecules are in the cavity of one EtP5 molecule driven by multiple C–H⋯O hydrogen bonds and C–H⋯π bonds. EtP5 assembles into honeycomb-like infinite edge-to-edge 1D channels. In the crystal structure of pyrrolidine-loaded EtP5 (pyrrolidine@EtP5, Fig. 2b and S19), one pyrrolidine molecule, stabilized by C–H⋯π interactions and C–H⋯O hydrogen bonds between hydrogen atoms on pyrrolidine and oxygen atoms on EtP5, is found in the cavity of EtP5. It''s worth mentioning that a hydrogen atom which is linked with the N atom of pyrrolidine also forms a strong hydrogen bond with an oxygen atom on the ethoxy group of EtP5. EtP5 forms imperfect 1D channels because of partial distortion of orientation. The PXRD patterns simulated from these crystal structures matched well with the experimental results (Fig. S18 and S20), which verified that the uptake of vapors transformed EtP5α into pyrrolidine-loaded EtP5.Open in a separate windowFig. 2Single crystal structures: (a) 2THF@EtP5; (b) pyrrolidine@EtP5.In the crystal structure of THF-loaded EtP6 (2THF@EtP6, Fig. 3a and S21), one EtP6 molecule encapsulated two THF molecules in its cavity with C–H⋯O interactions, forming a 1 : 2 host–guest complex. Although 1D channels are observed, EtP6 adopts a slightly different conformation, caused by the presence of THF. Moreover, the PXRD pattern of EtP6β after adsorption of THF vapor matches well with that simulated from 2THF@EtP6, which is evidence for the structural transformation upon adsorption. In the crystal structure of pyrrolidine-loaded EtP6 (pyrrolidine@EtP6, Fig. 3b and S23), a 1 : 1 host–guest complex with pyrrolidine is found. Driven by C–H⋯π interactions and C–H⋯O hydrogen bonds formed by hydrogen atoms on pyrrolidine and oxygen atoms on EtP6, one pyrrolidine molecule is in the cavity of EtP6 with the nitrogen atom inside the cavity. The window-to-window packing mode of hexagonal EtP6 molecules in pyrrolidine@EtP6 contributes to the formation of honeycomb-like infinite edge-to-edge 1D channels, favorable for guest adsorption. Likewise, the PXRD result of EtP6β after adsorption of pyrrolidine is in line with the simulated pattern of pyrrolidine@EtP6, indicating that EtP6β transformed into pyrrolidine@EtP6 in the presence of pyrrolidine (Fig. S22 and S24).Open in a separate windowFig. 3Single crystal structures: (a) 2THF@EtP6; (b) pyrrolidine@EtP6.According to the adsorption ability and different crystal structures after adsorption of guest vapors, we wondered whether EtP5α or EtP6β could separate mixtures of THF and pyrrolidine. We first evaluated separation by EtP5α. GC analysis indicated that the adsorption ratios of THF and pyrrolidine were 65.7% and 34.3%, respectively, when EtP5α was exposed to 50 : 50 (v/v) pyrrolidine/THF mixture vapor (Fig. 4a and S25). Such adsorption was also illustrated by 1H NMR (Fig. S26). Although EtP5α showed a preference for THF, the selectivity is not satisfactory and cannot be applied to industrial separation. The less satisfactory selectivity may be ascribed to the similar crystal structures of EtP5 after adsorption of THF or pyrrolidine and insufficient strong stabilizing interactions. The PXRD pattern of EtP5α after adsorption of the 50 : 50 (v/v) pyrrolidine/THF mixture vapor exhibited minor differences compared with that simulated from either 2THF@EtP5 or pyrrolidine@EtP5, due to poor selectivity (Fig. 4b).Open in a separate windowFig. 4(a)Time-dependent solid–vapor adsorption plot for EtP5α in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (b) PXRD patterns of EtP5α: (I) original EtP5α; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP5α; (VI) simulated from the single crystal structure of 2THF@EtP5α. (c) Time-dependent solid–vapor adsorption plot for EtP6β in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (d) PXRD patterns of EtP6β: (I) original EtP6β; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP6β; (VI) simulated from the single crystal structure of 2THF@EtP6β.Nevertheless, selective separation of THF and pyrrolidine was achieved with EtP6β. As shown in Fig. 4c, time-dependent solid–vapor adsorption experiments for a 50 : 50 (v/v) pyrrolidine/THF mixture were conducted. Unlike the phenomenon in single-component adsorption experiments, uptake of pyrrolidine by EtP6β increased and reached the saturation point rapidly (less than 2 hours), while capture of THF was negligible. According to the NMR and GC results (Fig. S27 and S28), the purity of pyrrolidine was determined to be 99.9% after 2 hours of adsorption, which indicates the remarkable selectivity of EtP6β for pyrrolidine. The PXRD pattern of EtP6β after adsorption of the mixture was consistent with that from single-component adsorption, indicating the structural transformation in the crystalline state upon selective capture of pyrrolidine from the mixture. Although THF and pyrrolidine have similar molecular structures, their non-covalent interactions with EtP6 are different. We assume that the hydrogen bond between N–H and the oxygen atom on EtP6 stabilizes pyrrolidine and leads to such selectivity. More importantly, compared with previous adsorption processes using NACs reported by our group, the selective separation of pyrrolidine was completed rapidly. According to the GC results, the purity of pyrrolidine reached around 95% in the initial 15 min, while it usually takes hours for selective separations of other substrates using NACs. Increasing the adsorption time to 2 h improves the purity to over 99%. The rapid separation of pyrrolidine with high purity using EtP6β shows great potential in industrial applications.Apart from selectivity, recyclability is also an important parameter for an adsorbent. Consequently, recycling experiments were carried out by heating pyrrolidine@EtP6 under vacuum at 100 °C to remove adsorbed pyrrolidine. According to TGA and PXRD analysis, the recycled EtP6 solid maintained crystallinity and structural integrity that were the same as those of activated EtP6 crystals (Fig. S29 and S30). Besides, it is worth mentioning that the recycled EtP6 solids were still capable of separating mixtures of pyrrolidine and THF without loss of performance after being recycled five times (Fig. S31).In conclusion, we explored the separation of pyrrolidine/THF mixtures using NACs of EtP5 and EtP6. Pyrrolidine was purified using EtP6 from a 50 : 50 (v/v) pyrrolidine/THF mixture with a purity of 99.9%, but EtP5 exhibited selectivity towards THF. Moreover, the separation of pyrrolidine by EtP6 was extremely fast so that over 95% purity was determined within 15 min of adsorption. The rapid separation is unique among NAC-based separations. Single-crystal structures revealed that the selectivity depended on the stability of the new structures after adsorption of the guests and the non-covalent interactions in the host–guest complexes. PXRD patterns indicated that the structures of the host crystals changed into the host–guest complexes after adsorption. Additionally, the NACs of EtP6 exhibited excellent recyclability over at least five runs; this endows EtP6 with great potential as an alternative adsorbent for rapid purification of pyrrolidine that can be applied in practical industry. The fast separation with such simple NACs in this work also reveals that minor structural differences can cause significant changes in properties, which should provide perspectives on designs of adsorbents or substrates with specifically tailored binding sites.  相似文献   
106.
A series of novel cobalt bis(dicarbollide)—curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)—curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).  相似文献   
107.
108.
Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme’s abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process.  相似文献   
109.
110.
Faraday-Michelson system for quantum cryptography   总被引:9,自引:0,他引:9  
Mo XF  Zhu B  Han ZF  Gui YZ  Guo GC 《Optics letters》2005,30(19):2632-2634
Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号