The Raman spectra of thin (d = 60–170 nm) Ge-Se polycrystalline films obtained by vacuum thermal evaporation of Ge10Se90 glass are investigated in the spectral range 110–310 cm?1. The coexistence of the glasslike and crystalline phases α-Se, β-Se, and β-GeSe2 is established using the X-ray diffraction method. Analysis of diffraction patterns and the Raman spectra of polycrystalline samples of various thicknesses demonstrates a phase size effect in the transition of Se from the α-monoclinic to the β monoclinic modification (d ~ 120 nm). It is found that the crystalline phase of Se is of the nanodisperse type with an average grain size of ~30–50 nm. Crystallites of β-GeSe2 have an average size of ~100–130 nm. 相似文献
Single crystals of pure, Ca2+ and Sr2+ doped NH4Sb3F10 are grown by slow evaporation technique. The effect of dopants on the growth and physicochemical properties also have been investigated and reported for the first time. The grown crystals are characterized with the aid of single crystal X-ray diffractometry to confirm the crystal structure. EDAX studies are done to confirm the presence of dopants in the crystal lattice. The vibrational frequencies of various group ligands in the crystals have been derived from the Fourier transform infrared (FT-IR) spectrum. From the optical absorption spectrum the band gap energy was calculated and it was found to be 5.76, 6.29 and 6.35 eV for pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals respectively. Thermal stability of the sample has been analysed using TG-DTA analysis. The activation energy of pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals were calculated from the dc conductivity measurements and it is found to be 0.2728, 0.2816 and 0.3622 eV Experimental results shows improved physicochemical properties when the dopant is added to the pure material. 相似文献
The defect chalcopyrite crystal HgGa2S4 has been employed in a 1064‐nm pumped optical parametric oscillator operating at 100 Hz, to generate ∼5 ns long idler pulses near 4 µm with energies as high as 6.1 mJ and average power of 610 mW. At crystal dimensions comparable to those available for the commercial AgGaS2 crystal, operation of the 1064‐nm pumped HgGa2S4 OPO is characterized by much lower pump threshold and higher conversion efficiency, with the most important consequence that such a device might become practical at pump levels sufficiently lower than the optical damage threshold. 相似文献
Fractal decimation reduces the effective dimensionality D of a flow by keeping only a (randomly chosen) set of Fourier modes whose number in a ball of radius k is proportional to k(D) for large k. At the critical dimension D(c)=4/3 there is an equilibrium Gibbs state with a k(-5/3) spectrum, as in V. L'vov et al., Phys. Rev. Lett. 89, 064501 (2002). Spectral simulations of fractally decimated two-dimensional turbulence show that the inverse cascade persists below D=2 with a rapidly rising Kolmogorov constant, likely to diverge as (D-4/3)(-2/3). 相似文献
Currently there is no rack system for the long‐term storage of SPINE pucks in spite of their commercial availability and heavy usage at the ESRF. The only way to store pucks is in transport dewar canisters which presents a number of limitations and drawbacks. Here a simple affordable rack for storing SPINE pucks is described, which we believe is accessible to not only synchrotrons but also both academic and industrial research laboratories. 相似文献
The crystalline structure of a C60/C70 membrane prepared by an original technique has been studied by x-ray diffraction and Raman spectroscopy. The effects of purification of the starting C60/C70 mixture to C70 composition and of spatial separation of the C60 and C70 phases in the membrane have been revealed. The samples studied were established to have a composition gradient from C60 to C70. The main structure of the membrane is shown to be an fcc lattice with a=14.308 Å. 相似文献
Nerve gas mimic binding with Rhodamine B ethylenediamine (1) was studied in organic media. Binding of the nerve gas mimic, diethyl chlorophosphate (DCP), with the probe generated a non-fluorescent intermediate and a fluorescent product. Fluorescent and non-fluorescent products generated were identified using mass spectrometry and X-ray crystallography. Time-dependent density functional theory calculations were also used to investigate the electronic structure of the fluorescent probe in the ground and lowest lying π?→?π* singlet excited state. Though good agreement between theory and experiment can be obtained for the intense peak in the experimental spectrum using non-hybrid functionals, care must be taken when modelling these complexes due to the appearance of an n?→?π* transition that is too low in energy and appears to fall in the shoulders of the π?→?π* transitions.