首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131027篇
  免费   725篇
  国内免费   410篇
化学   57453篇
晶体学   1145篇
力学   7484篇
综合类   1篇
数学   40418篇
物理学   25661篇
  2023年   486篇
  2022年   765篇
  2021年   1073篇
  2020年   1109篇
  2019年   1047篇
  2018年   11233篇
  2017年   10948篇
  2016年   7819篇
  2015年   2402篇
  2014年   1966篇
  2013年   3797篇
  2012年   6947篇
  2011年   13255篇
  2010年   7525篇
  2009年   7554篇
  2008年   9126篇
  2007年   10966篇
  2006年   2514篇
  2005年   3488篇
  2004年   3418篇
  2003年   3511篇
  2002年   2434篇
  2001年   1334篇
  2000年   1334篇
  1999年   879篇
  1998年   768篇
  1997年   621篇
  1996年   821篇
  1995年   560篇
  1994年   589篇
  1993年   568篇
  1992年   552篇
  1991年   487篇
  1990年   517篇
  1989年   450篇
  1988年   443篇
  1987年   408篇
  1986年   404篇
  1985年   536篇
  1984年   479篇
  1983年   377篇
  1982年   395篇
  1981年   400篇
  1980年   347篇
  1979年   326篇
  1978年   310篇
  1977年   287篇
  1976年   302篇
  1974年   265篇
  1973年   291篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Rho-associated protein kinase (ROCK) has been recognized as an attractive therapeutic target to promote neurogenesis, neuroregeneration, and neurorecovery after cerebral injury. Here, a high-throughput screening protocol was described to discover novel ROCK inhibitors from a large chemical library containing \(\sim \)6.1 million structurally diverse, lead-like compounds. The protocol employed empirical rules such as ADMET evaluation and chemical similarity analysis to exclude those of drug-unlike candidates, and then molecular docking and binding affinity predictions were performed to suggest few promising candidates with high scores. Consequently, five compounds were successfully identified to have satisfactory activity profile with \(\hbox {IC}_{50}\) values at nanomolar level. In order to elucidate the molecular mechanism of inhibitor binding to target, the complex structures of ROCK kinase domain with the five identified compounds were modeled and examined in detail. A number of polar chemical forces such as hydrogen bonds and cation-\(\pi \) interactions as well as nonpolar contacts such as \(\pi \)\(\pi \) stacking and hydrophobic forces were revealed at the complex interface, conferring high affinity and strong specificity to inhibitor binding. In addition, several key residues around the kinase active site, including Val90, Lys105, Asn203, and Phe368, were found to play an important role in binding.  相似文献   
992.
An efficient and facile green synthesis of spirooxindole derivatives bearing pyrano[2,3-c]pyrazole moiety has been achieved via a \(\mathrm{CeO}_{2}\)-NPs catalyzed four-component reaction in water. The protocol offers an environmentally benign and effective approach to highly functionalized and biologically interesting spiro[indoline-3,4\(^\prime \)-pyrano[2,3-c]pyrazole] derivatives. The synthesized compounds exhibit potent antioxidant and antibacterial activities.  相似文献   
993.
For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane detection. A current-modulation method, rather than a cavity-modulation method using an optical switch and a piezoelectric transducer, was employed to realize the cavity excitation and shutoff. Such a current-modulation method enabled the improvement of the experimental setup construction and stability, and the system size and stability are critical for a sensor to be deployed underwater. Ringdown data acquisition and processing were performed, followed by an evaluation of the experimental setup stability and sensitivity. The obtained results demonstrate that great errors are introduced when a large fitting window is selected if the analog-to-digital converter has an insufficient resolution. The ringdown spectrum of methane corresponding to the 2v 3 band R(4) branch was captured, and the methane concentration in lab air was determined to be 2.06 ppm. Further experiments for evaluating the quantitative ability of this CW-CRDS experimental setup are underway from which a high-sensitivity methane sensor that can be combined with a degassing system is expected.  相似文献   
994.
Spinel LiMn2O4 has been known to be a technologically important, environmental-friendly, and low-cost cathode material used in Li-based rechargeable batteries, and it is also widely available. Nanoparticle spinel LiMn2O4 has been synthesized by the top-down, high-energy milling, and hydrothermal methods. SEM images, X-ray diffraction patterns, and neutron high-resolution powder diffraction patterns have confirmed the nanocrystalline nature of the spinel LiMn2O4 samples. Raman and Fourier transform infrared (FTIR) measurements show typical absorption and vibration spectra typical for the spinel LiMn2O4 showing the formation of various metallic bonds in the sample. The strongest Raman and FTIR signals come from the higher frequency region, with weaker signals appearing in the lower frequency range.  相似文献   
995.
Biodegradable polymer electrolyte films based on poly(ε-caprolactone) (PCL) in conjunction with lithium tetrafluoroborate (LiBF4) salt and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution cast technique. The structural, morphological, thermal, and electrical properties of these films were examined using X-ray diffraction (XRD), optical microscopy (OM), differential scanning calorimetry (DSC), and impedance spectroscopy. The XRD and OM results reveal that the pure PCL possesses a semi-crystalline nature and its degree of crystallinity decreases with the addition of LiBF4 salt and EMIMBF4 ionic liquid. DSC analysis indicates that the melting temperature and enthalpy are apparently lower for the 40 wt% EMIMBF4 gel polymer electrolyte as compared with the others. The ambient temperature electrical conductivity increases with increasing EMIMBF4 concentration and reaches a high value of ~2.83?×?10?4 S cm?1 for the 85 PCL:15 LiBF4 + 40 wt% EMIMBF4 gel polymer electrolyte. The dielectric constant and ionic conductivity follow the same trend with increasing EMIMBF4 concentration. The dominant conducting species in the 40 wt% EMIMBF4 gel polymer electrolyte determined by Wagner’s polarization technique are ions. The ionic conductivity of this polymer electrolyte (~2.83?×?10?4 S cm?1) should be high enough for practical applications.  相似文献   
996.
In this work, doped poly(p-phenylene vinylene)/zeolite composites was prepared to detect the three different chemical vapors (acetone, methanol, and n-heptane) and to investigate the effects of zeolite type, chemical vapor type, and vapor concentration based on the electrical conductivity response and selectivity properties of the sensing materials. Before blending with PPV, zeolite Y (Si/Al?=?5.1 and Na+), mordenite (Si/Al?=?18 and Na+), and 5A (LTA) (Si/Al?=?1.0 and Na+) were ion exchanged with Cu2+ at 80 % ion exchanged to prepare 80CuNaY, 80CuNaMOR, and 80CuNa5A. 80CuNaY exhibited the highest electrical conductivity response under acetone and methanol exposures while 80CuNaMOR showed the highest response in n-heptane exposure which depended on the adsorption and solubility properties of each porous material. When adding doped poly(p-phenylene vinylene) (dPPV) into the 80CuNaY matrix, the minimum detection vapor concentration decreased in acetone, methanol, and n-heptane vapors. For the selectivity, the composite between 80CuNaY and dPPV responded only in the polar vapors (acetone, methanol) whereas the composite between dPPV and 80CuNaMOR or dPPV_[90]80CuNaMOR responded only in the nonpolar vapor (n-heptane). The interactions between the sensing materials and the chemical vapors were investigated and identified by FTIR and AFM techniques.  相似文献   
997.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   
998.
Yan Yuan  Hai Lu  Zhao Fang  Baizhen Chen 《Ionics》2016,22(9):1509-1515
A unique structured hollow carbon nanofiber–sulfur composite material (HCF–S) was fabricated and characterized in lithium-sulfur batteries. It is found that a part of spherical sulfur particles are located in the voids formed by the intertwined fibers and the others are confined in hollow channel of the HCF. The high conductive and porous HCF favors the construction of stable three-dimensional conducting network and convenient infiltration of the electrolytes into the cathode. The HCF–S cathode exhibits excellent electrochemical performance in the electrolyte with LiNO3. By contrast, the ionic liquid electrolyte provides insufficient shuttle suppression and weakens ion transport, which leads to poor cycle and rate capability.  相似文献   
999.
Layered LiNi1/3Co1/3Mn1/3O2 cathode material is synthesized via a sol-gel method and subsequently surface-modified with Eu2O3 layer by a wet chemical process. The effect of Eu2O3 coating on the electrochemical performances and thermal stability of LiNi1/3Co1/3Mn1/3O2@Eu2O3 cells is investigated systematically by the charge/discharge testing, cyclic voltammograms, AC impedance spectroscopy, and DSC measurements, respectively. In comparison, the Eu2O3-coated sample demonstrates better electrochemical performances and thermal stability than that of the pristine one. After 100 cycles at 1C, the Eu2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode demonstrates stable cyclability with capacity retention of 92.9 %, which is higher than that (75.5 %) of the pristine one in voltage range 3.0–4.6 V. Analysis from the electrochemical measurements reveals that the remarkably improved performances of the surface-modified composites are mainly ascribed to the presence of Eu2O3-coating layer, which could efficiently suppress the undesirable side reaction and increasing impedance, and enhance the structural stability of active material.  相似文献   
1000.
The SnO2 nano-flower/graphene (SnO2-NF/GN) composites were synthesized by using graphene (GN) and SnO2 nano-flower (SnO2-NF). Among them, the SnO2-NFs were prefabricated by using sodium hydroxide and stannic chloride pentahydrate (SnCl4·5H2O) as raw materials. The results of SEM show that the SnO2-NFs are uniformly dispersed on the surface of GN. Furthermore, compared with the pure SnO2, the as-prepared SnO2-NF/GN composites displayed superior cycle performace and high rate capability. The SnO2-NF/GN composite delivers a specific capacity of 650 mAh g?1 after 60 cycles and an excellent rate capability of 480 mAh g?1 at 2000 mA g?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号