首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   10篇
  国内免费   49篇
化学   129篇
力学   8篇
综合类   2篇
数学   17篇
物理学   23篇
  2022年   6篇
  2021年   1篇
  2020年   10篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   13篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2001年   7篇
  2000年   8篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
111.
在B3LYP/aug-cc-pvDZ理论水平上研究了CN,NO2,NH2,N3,N2H,NHNH2,N4H和N4H3含氮取代基取代1,2,4,5-四嗪环上的两个氢原子生成的衍乍物,预测了它们的分f构犁、分解能及含能性质.对衍生物分解能的研究结果表明.CN取代的衍生物的分解能比未取代时更高,而其余基团的取代使分解能降低.生成热的研究显示取代基化合物的生成热越大,取代1,2,4,5-四嗪中的氢原子后生成衍生物的牛成热也越大;CN,N3和N4H取代的1,2,4,5-四嗪衍生物的单位原子生成热在83.1~95.2 kJ,比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高;N4H,N3,N4H3,N2H和CN取代的1,2,4,5-四嗪衍生物,生成热在904.9~1496.6 kJ·mol-1,但N4H和N4H3取代的衍生物分解能较小,稳定性较差.  相似文献   
112.
The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.  相似文献   
113.
Science China Mathematics - In this paper, we consider a class of quasilinear Schrödinger-Poisson problems of the form $$\left\{ {\matrix{{ - \left( {a + b\int_{{^N}} {{{\left| {\nabla u}...  相似文献   
114.
The lithium-ion capacitor (LIC) has attracted tremendous research interest because it meets both the requirement on high energy and power densities. The balance between effective surface areas and mass transport is highly desired to fabricate the optimized electrode material for LIC. Now, triple-shelled (3S) Nb2O5 hollow multi-shelled structures (HoMSs) were synthesized for the first time through the sequential templating approach and then applied for the anode of LIC. The unique structure of HoMSs, such as large efficient surface area, hierarchical pores, and multiple shells, provides abundant reaction sites, decreases the electron transport resistance, and increases the diffusion rate for ion transport. In this case, the best combination performance has been achieved among all the reported Nb2O5-based materials, which delivered an excellent energy and power densities simultaneously, and superb cycling stability.  相似文献   
115.
李来才  张明  毛双  杨春  田安民 《化学学报》2015,73(2):143-150
采用基于密度泛函理论的LDA (PWC)方法对比研究了纯单壁纳米碳管(SWCNT)和B掺杂单壁碳纳米管(B doped SWCNT)表面吸附DNA碱基(腺嘌呤)A、(胸腺嘧啶)T、(胞嘧啶)C、(鸟嘌呤)G的吸附特性和本质, 计算研究了最佳吸附位点, 吸附能, 以及稳定吸附模型的电子结构. 结果表明掺杂元素B的引入不会造成SWCNT的结构畸变, 可以局部影响碳纳米管的电子结构, 有效增强SWCNT与DNA碱基之间的电子相互作用, DNA碱基以化学吸附的形式修饰在B掺杂SWCNT的表面. 研究结果预示B掺杂SWCNT表面修饰DNA碱基有潜力成为DNA生物传感器生物识别界面的主要成分.  相似文献   
116.
非线性特征值问题的正解   总被引:2,自引:0,他引:2  
本文着重考察非线性特征值问题u"+λg(t)f(u)=0, 0相似文献   
117.
The asymmetric catalysis reaction is considered to be an important way by which chiral compounds are generated. Chiral 1,3,2-oxazaborolidine, as an effective asymmetric catalyst, is used widely in the enantioselective reduction of prochiral ketones, imines, and carbon-carbon double bonds[1—3]. Up to now, a number of quantum chemical modeling investigations of the en-antioselective reduction of prochiral ketones with borane catalyzed by chiral oxazaborolidines have been carried out[4—7]. Howe…  相似文献   
118.
材料受力时应力状态不同,则断裂过程物理机理会发生改变,脆性材料受拉时发生的拉断与受压时发生的剪断,是两种不同物理机理的断裂形式,而莫尔强度理论用一个断裂条件解决这两种断裂形式的强度问题,是否合理需要讨论,结合灰铸铁HT200材料在不同受力条件下的断裂破坏试验,对此问题进行了研究,结果表明,莫尔理论对复杂应力状态下材料断裂不能合理、准确地进行强度计算。  相似文献   
119.
几种金属材料宏观断裂形式的试验研究   总被引:10,自引:1,他引:10  
总结了几种金属材料在常规破坏试验过程中的断裂现象,分析了不同材料不同应力三维度下的几种宏观断裂形式,结果表明,金属材料在不同受力形式下,随应力状态参数Rσ从大向小变化,断裂机理从穿晶脆断,向以孔洞扩张聚合、局部剪切带的扩展转化,材料可能依次发生解理脆断、孔洞正断、有孔洞影响的剪断、无孔洞影响的剪断等四种断裂形式,材料断裂危险点与断裂条件也随着发生变化。  相似文献   
120.
The methanol to olefins conversion over zeolite catalysts is a commercialized process to produce light olefins like ethene and propene but its mechanism is not well understood. We herein investigated the formation of ethene in the methanol to olefins reaction over the H‐ZSM‐5 zeolite. Three types of ethylcyclopentenyl carbocations, that is, the 1‐methyl‐3‐ethylcyclopentenyl, the 1,4‐dimethyl‐3‐ethylcyclopentenyl, and the 1,5‐dimethyl‐3‐ethylcyclopentenyl cation were unambiguously identified under working conditions by both solid‐state and liquid‐state NMR spectroscopy as well as GC‐MS analysis. These carbocations were found to be well correlated to ethene and lower methylbenzenes (xylene and trimethylbenzene). An aromatics‐based paring route provides rationale for the transformation of lower methylbenzenes to ethene through ethylcyclopentenyl cations as the key hydrocarbon‐pool intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号