首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   66篇
化学   879篇
晶体学   2篇
力学   6篇
数学   72篇
物理学   64篇
  2023年   4篇
  2021年   10篇
  2020年   14篇
  2019年   13篇
  2018年   9篇
  2016年   26篇
  2015年   34篇
  2014年   35篇
  2013年   43篇
  2012年   60篇
  2011年   60篇
  2010年   44篇
  2009年   44篇
  2008年   39篇
  2007年   54篇
  2006年   47篇
  2005年   50篇
  2004年   43篇
  2003年   54篇
  2002年   41篇
  2001年   20篇
  2000年   24篇
  1999年   30篇
  1998年   23篇
  1997年   18篇
  1996年   17篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   23篇
  1991年   8篇
  1990年   10篇
  1988年   7篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
  1956年   2篇
  1955年   1篇
排序方式: 共有1023条查询结果,搜索用时 515 毫秒
151.
Anke Busse  Martin Schanz 《PAMM》2004,4(1):520-521
Because of the still increasing noise pollution the numerical simulation of acoustic problems becomes more and more important. One essential aspect is the numerical treatment of noise insulation of solid walls. The main noise source is the bending vibration of separating components. In general, they consist of porous material, e.g., concrete or bricks. To take into account the porous structure as well as the damping effect of the porosity of these components a poroelastic plate theory is developed. The Finite Element implementation of this plate theory shows the importance of taking porous materials into account. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
152.
153.
154.
A new family of optically active cyclophane receptors for the complexation of mono‐ and disaccharides in competitive protic solvent mixtures is described. Macrocycles (−)‐(R,R,R,R)‐ 1 – 4 feature preorganized binding cavities formed by four 1,1′‐binaphthalene‐2,2′‐diyl phosphate moieties bridged in the 3,3′‐positions by acetylenic or phenylacetylenic spacers. The four phosphodiester groups converge towards the binding cavity and provide efficient bidentate ionic H‐bond acceptor sites (Fig. 2). Benzyloxy groups in the 7,7′‐positions of the 1,1′‐binaphthalene moieties ensure solubility of the nanometer‐sized receptors and prevent undesirable aggregation. The construction of the macrocyclic framework of the four cyclophanes takes advantage of Pd0‐catalyzed aryl—acetylene cross‐coupling by the Sonogashira protocol, and oxidative acetylenic homo‐coupling methodology (Schemes 2 and 8 – 10). Several cleft‐type receptors featuring one 1,1′‐binaphthalene‐2,2′‐diyl phosphate moiety were also prepared (Schemes 1, 6, and 7). An undesired side reaction encountered during the synthesis of the target compounds was the formation of naptho[b]furan rings from 3‐ethynylnaphthalene‐2‐ol derivatives, proceeding via 5‐endo‐dig cyclization (Schemes 35). Computer‐assisted molecular modeling indicated that the macrocycles prefer nonplanar puckered, cyclobutane‐type conformations (Figs. 7 and 8). According to these calculations, receptor (−)‐(R,R,R,R)‐ 1 has, on average, a square binding site, which is complementary in size to one monosaccharide. The three other cyclophanes (−)‐(R,R,R,R)‐ 2 – 4 feature, on average, wider rectangular cavities, providing a good fit to one disaccharide, while being too large for the complexation of one monosaccharide. This substrate selectivity was fully confirmed in 1H‐NMR binding titrations. The chiroptical properties of the cyclophanes and their nonmacrocyclic precursors were investigated by circular dichroism (CD) spectroscopy. The CD spectra of the acyclic precursors showed a large dependence from the number of 1,1′‐binaphthalene moieties (Fig. 9), and those of the cyclophanes were remarkably influenced by the nature of the functional groups lining the macrocyclic cavity (Fig. 11). Profound differences were also observed between the CD spectra of linear and macrocyclic tetrakis(1,1′‐binaphthalene) scaffolds, which feature very different molecular shapes (Fig. 10). In 1H‐NMR binding titrations with mono‐ and disaccharides (Fig. 13), concentration ranges were chosen to favor 1 : 1 host−guest binding. This stoichiometry was experimentally established by the curve‐fitting analysis of the titration data and by Job plots. The titration data demonstrate conclusively that the strength of carbohydrate recognition is enhanced with an increasing number of bidentate ionic host−guest H‐bonds (Table 1) in the complex formed. As a result of the formation of these highly stable H‐bonds, carbohydrate complexation in competitive protic solvent mixtures becomes more favorable. Thus, cleft‐type receptors (−)‐(R)‐ 7 and (−)‐(R)‐ 38 with one phosphodiester moiety form weak 1 : 1 complexes only in CD3CN. In contrast, macrocycle (−)‐(R,R,R,R)‐ 1 with four phosphodiester groups undergoes stable inclusion complexation with monosaccharides in CD3CN containing 2% CD3OD. With their larger number of H‐bonding sites, disaccharide substrates bind even more strongly to the four phosphodiester groups lining the cavity of (−)‐(R,R,R,R)‐ 2 and complexation becomes efficient in CD3CN containing 12% CD3OD. Finally, the introduction of two additional methyl ester residues further enhances the receptor capacity of (−)‐(R,R,R,R)‐ 3 , and efficient disaccharide complexation occurs already in CD3CN containing 20% CD3OD.  相似文献   
155.
156.
Three bowl‐type cavitand receptors ( 1 – 3 ), consisting of a resorcin[4]arene core with four convergent phenylamidinium groups, were prepared in gram quantities by efficient synthetic routes (Schemes 1 and 2) for the recognition of organic anions in CD3OD and D2O. The key steps in the syntheses are the Suzuki cross‐coupling reactions between the tetraiodo cavitands 12 , 13 , and 23 , respectively, with the m‐cyanophenylboronic ester 14 and subsequent conversion of the nitrile to amidinium groups by the Garigipati reaction. Compounds 1 and 2 displayed limited solubility in protic solvents, and evidence for stoichiometric host‐guest association between 2 and AMP ( 28 ) could only be obtained by FAB‐MS analysis of a complex precipitated from MeOH (Fig. 2). In contrast, receptor 3 with four triethyleneglycol monomethyl ether side chains was readily soluble in the protic environments, and complexation of isophthalates and nucleotides 25 – 37 was extensively studied by 1H‐NMR titrations and Job's method of continuous variation. In CD3OD and pure D2O, isophthalates 25 and 26 formed stable 1 : 2 host‐guest complexes (Table 1 and Fig. 3), whereas upon addition of borate (pH 9.2) or Tris/HCl buffer (pH 8.3) to the D2O solution, the tendency for higher‐order complexation vanishes. Stable 1 : 1 complexes formed in the buffered solutions (Fig. 4) with 5‐methoxyisophthalate being selectively bound over the 5‐NO2 derivative. Complexation‐induced upfield shifts of specific isophthalate 1H‐NMR resonances (Fig. 5) suggest a preferred inclusion of the methoxyphenyl ring into the receptor cavity. Cavitand 3 forms stable 1 : 1 host‐guest complexes with nucleotides in Tris/HCl‐buffered D2O. Association constants increase strongly with increasing guest charge in the series cAMP<AMP<ADP<ATP (Table 2). Association strength is strongly reduced in the presence of high salt (NaCl) concentration (Table 3). Receptor 3 shows a slight preference for the complexation of AMP (Fig. 7) and analogs dAMP or ε‐AMP (Table 4) over nucleotides containing G (guanine), C (cytosine), T (thymine), or U (uracil) as bases. According to the 1H‐NMR analysis, only the nucleobase adenine and derivatives thereof possess the necessary stereoelectronic complementarity for inclusion into the bowl‐type cavity. The major forces stabilizing the complexes of 3 with isophthalates and nucleotides result from ion pairing and ionic H‐bonding between the charged groups of host and guest, and from the desolvation of these groups upon complexation. Apolar interactions and hydrophobic desolvation do not seem to make a large contribution to the measured binding free enthalpies.  相似文献   
157.
158.
159.
The synthesis and carbohydrate-recognition properties of a new family of optically active cyclophane receptors, 1 – 3 , in which three 1,1′-binaphthalene-2,2′-diol spacers are interconnected by three buta-1,3-diynediyl linkers, are described. The macrocycles all contain highly preorganized cavities lined with six convergent OH groups for H-bonding and complementary in size and shape to monosaccharides. Compounds 1 – 3 differ by the functionality attached to the major groove of the 1,1′-binaphthalene-2,2′-diol spacers. The major grooves of the spacers in 2 are unsubstituted, whereas those in 1 bear benzyloxy (BnO) groups in the 7,7′-positions and those in 3 2-phenylethyl groups in the 6,6′-positions. The preparation of the more planar, D3-symmetrical receptors (R,R,R)- 1 (Schemes 1 and 2), (S,S,S)- 1 (Scheme 4), (S,S,S)- 2 (Scheme 5), and (S,S,S)- 3 (Scheme 8) involved as key step the Glaser-Hay cyclotrimerization of the corresponding OH-protected 3,3′-diethynyl-1,1′-binaphthalene-2,2′-diol precursors, which yielded tetrameric and pentameric macrocycles in addition to the desired trimeric compounds. The synthesis of the less planar, C2-symmetrical receptors (R,R,S)- 2 (Scheme 6) and (S,S,R)- 3 (Scheme 9) proceeded via two Glaser-Hay coupling steps. First, two monomeric precursors of identical configuration were oxidatively coupled to give a dimeric intermediate which was then subjected to macrocyclization with a third monomeric 1,1′-binaphthalene precursor of opposite configuration. The 3,3′-dialkynylation of the OH-protected 1,1′-binaphthalene-2,2′-diol precursors for the macrocyclizations was either performed by Stille (Scheme 1) or by Sonogashira (Schemes 4, 5, and 8) cross-coupling reactions. The flat D3-symmetrical receptors (R,R,R)- 1 and (S,S,S)- 1 formed 1 : 1 cavity inclusion complexes with octyl 1-O-pyranosides in CDCl3 (300 K) with moderate stability (ΔG0 ca. −3 kcal mol−1) as well as moderate diastereo- (Δ(ΔG0) up to 0.7 kcal mol−1) and enantioselectivity (Δ(ΔG0)=0.4 kcal mol−1) (Table 1). Stoichiometric 1 : 1 complexation by (S,S,S)- 2 and (S,S,S)- 3 could not be investigated by 1H-NMR binding titrations, due to very strong signal broadening. This broadening of the 1H-NMR resonances is presumably indicative of higher-order associations, in which the planar macrocycles sandwich the carbohydrate guests. The less planar C2-symmetrical receptor (S,S,R)- 3 formed stable 1 : 1 complexes with binding free enthalpies of up to ΔG0=−5.0 kcal mol−1 (Table 2). With diastereoselectivities up to Δ(ΔG0)=1.3 kcal mol−1 and enantioselectivities of Δ(ΔG0)=0.9 kcal mol−1, (S,S,R)- 3 is among the most selective artificial carbohydrate receptors known.  相似文献   
160.
Regioselective Bingel macrocyclization of C60 with a bis-malonate containing a novel dibenzo[18] crown-6 tether provides a versatile access to trans-1 fullerene bis-adducts such as (±)- 1 . Complexation of a potassium ion by (±)- 1 has a pronounced effect on the redox properties of the carbon sphere as a result of the close proximity of the fullerene surface to the crown ether bound cation, which is enforced by the double bridging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号