首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
化学   28篇
晶体学   1篇
力学   1篇
数学   1篇
物理学   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
31.
The influence of different inorganic salts (MgCl2, ZnCl2, NiCl2 and H2PtCl6) on the primary mechanisms of cellulose thermal degradation has been conducted by using thermogravimetric (TG-DTG) and pyrolysis-mass spectrometry (Py-MS) analysis at low heating rate (10°C min-1) from ambient temperature to 500°C. The results clearly demonstrate that the used salts influence the primary degradation mechanisms. Furthermore, we can assume that some inorganic salts could be considered as specific catalysts and some others as inhibitors. MgCl2 promotes selectively initial low temperature dehydration as observed both by TG and Py-MS. ZnCl2 strongly changes the thermal behaviour of impregnated sample. The maximum mass loss rate temperature is shifted to lower temperature and on the basis of our results we can conclude that ZnCl2 acts as catalyst in all primary degradation mechanisms. NiCl2 and H2PtCl6 do not modify significantly the cellulose thermal behaviour but change the composition of both produced gases and liquids suggesting that these minerals catalyse some secondary reactions.  相似文献   
32.
A flow-injection method for measuring the peroxide value (PV, mequiv. O2 kg−1) in edible oils is described. The technique is based on spectrophotometric monitoring at 660 nm of methylene blue (MB), generated from leucomethylene blue (LMB) oxidation with peroxides present in oil samples. After being optimized, the method was validated in terms of linearity, precision sensitivity and recovery.Linear calibration graph was obtained in the range 0.1-5 mequiv. O2 kg−1, with a detection limit (S/N  =  3) of 0.014 mequiv. O2 kg−1. The precision of the method (R.S.D., n = 9) for within and between-days is better than 1.5% and 2.2%, respectively at 0.4 mequiv. O2 kg−1. The method was applied successfully to the determination of PV in six edible oil samples, and compared to the classical official method. Using the linear regression test, Student's t-test and variance ratio F-test, there was no significant difference between the compared methods. The proposed method is accurate, simple, cheap and could be used to control edible oil rancidity with a high sample throughputs (30 samples h−1).  相似文献   
33.
Ethnobotanical studies have reported the traditional medicinal uses of Acacia senegal (L.) Willd. and Argania spinosa (L.) Skeels against kidney stone formation and other chronic kidney diseases. The present work is undertaken to study the litholytic activity and the inhibiting activity of calcium oxalate crystallization by bioactive compounds identified in Argania spinosa (L.) Skeels press-cake (residue of Argan oil) and in Acacia senegal (L.) Willd. The litholytic activity was studied in vitro on cystine and uric acid stones using a porous bag and an Erlenmeyer glass. The study of the inhibiting activity of calcium oxalate crystallization, was based on temporal measurements of the optical density, registered at a 620 nm wavelength for 30 min using an ultraviolet–visible spectrophotometer. The silylation method was performed to identify phytochemicals, followed by gas chromatography coupled with mass spectrophotometry (GC/MS) analysis. The results show significant litholytic activity of Argania Spinosa press-cake hydro-ethanolic extract on uric acid and cystine stones, respectively, with dissolution rates (DR) of 86.38% and 60.42% versus 3.23% and 9.48% for the hydro-ethanolic extract of Acacia senegal exudate. Furthermore, the percentages of nucleation inhibition are 83.78% and 43.77% (p ˂ 0.05) for Argania spinosa and Acacia senegal, respectively. The results point to the detection of 17 phytochemicals in Argania spinosa press-cake extract, the majority of which are phenolic acids and have potent anti-urolithiatic action.  相似文献   
34.
Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号