首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47128篇
  免费   15698篇
  国内免费   67篇
化学   56340篇
晶体学   56篇
力学   2146篇
数学   2901篇
物理学   1450篇
  2024年   373篇
  2023年   4089篇
  2022年   1468篇
  2021年   2518篇
  2020年   4633篇
  2019年   2321篇
  2018年   2298篇
  2017年   614篇
  2016年   5608篇
  2015年   5558篇
  2014年   4990篇
  2013年   5210篇
  2012年   3278篇
  2011年   1126篇
  2010年   3462篇
  2009年   3416篇
  2008年   1108篇
  2007年   835篇
  2006年   183篇
  2005年   159篇
  2004年   124篇
  2003年   121篇
  2002年   103篇
  1996年   110篇
  1995年   162篇
  1994年   101篇
  1993年   224篇
  1992年   112篇
  1988年   122篇
  1987年   114篇
  1985年   107篇
  1984年   122篇
  1983年   117篇
  1982年   151篇
  1981年   174篇
  1980年   201篇
  1979年   197篇
  1978年   199篇
  1977年   325篇
  1976年   372篇
  1975年   465篇
  1974年   480篇
  1973年   288篇
  1972年   371篇
  1971年   356篇
  1970年   546篇
  1969年   416篇
  1968年   461篇
  1967年   121篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
The different thermally induced intermolecular electron transfer (IET) processes that can take place in the series of complexes [M(Cat‐N‐BQ)(Cat‐N‐SQ)]/[M(Cat‐N‐BQ)2], for which M=Co ( 2 ), Fe ( 3 ) and Ni( 4 ), and Cat‐N‐BQ and Cat‐N‐SQ denote the mononegative (Cat‐N‐BQ?) or dinegative (Cat‐N‐SQ2?) radical forms of the tridentate Schiff‐base ligand 3,5‐di‐tert‐butyl‐1,2‐quinone‐1‐(2‐hydroxy‐3,5‐di‐tert‐butylphenyl)imine, have been studied by variable‐temperature UV/Vis and NMR spectroscopies. Depending on the metal ion, rather different behaviors are observed. Complex 2 has been found to be one of the few examples so far reported to exhibit the coexistence of two thermally induced electron transfer processes, ligand‐to‐metal (IETLM) and ligand‐to‐ligand (IETLL). IETLL was only found to take place in complex 3 , and no IET was observed for complex 4 . Such experimental studies have been combined with ab initio wavefunction‐based CASSCF/CASPT2 calculations. Such a strategy allows one to solicit selectively the speculated orbitals and to access the ground states and excited‐spin states, as well as charge‐transfer states giving additional information on the different IET processes.  相似文献   
992.
993.
The isolation of σ‐alkylpalladium Heck intermediates, possible when β‐hydride elimination is inhibited, is a rather rare event. Performing intramolecular Heck reactions on N‐allyl‐2‐halobenzylamines in the presence of [Pd(PPh3)4], we isolated and characterized a series of stable bridged palladacycles containing an iodine or bromine atom on the palladium atom. Indolyl substrates were also tested for isolation of the corresponding complexes. X‐ray crystallographic analysis of one of the indolyl derivatives revealed the presence of a five‐membered palladacycle with the metal center bearing a PPh3 ligand and an iodine atom in a cis position with respect to the nitrogen atom. The stability of the σ‐alkylpalladium complexes is probably a consequence of the strong constraint resulting from the bridged junction that hampers the cisoid conformation essential for β‐hydride elimination. Subsequently, the thus obtained bridged five‐membered palladacycles were proven to be effective precatalysts in Heck reactions as well as in cross‐coupling processes such as Suzuki and Stille reactions.  相似文献   
994.
The chiral tris‐monodentate imidazolinyl ligands 1 a – c exhibit a strong tendency to form the discrete, helical [2+3] nanocages 3 ([ 1 2 ?2 3]) with tartaric acids 2 . Circular dichroism (CD) spectra and theoretical calculations reveal that supramolecular handedness of capsulelike architectures is determined only by the chirality of the imidazolinyl ligands rather than tartaric acids. The chirality of imidazolinyl ligands is transferred to the helicity of the complexes through the directed hydrogen bonds between the N3 atom of imidazoline rings and the carboxyl of tartaric acids. These hydrogen‐bonded nanocages can spontaneously self‐assemble into spherical vesicles, during which the hydrogen bonding that arises from the hydroxyl groups of tartaric acids plays a crucial issue. The vesicles formed by [{(S,S,S)‐ 1 a }2( 2 L)3] ( 3 a ) may further evolve into microspheres that gelate organic solvents after being aged at ?20 °C for 24 h, and can also be unprecedentedly transformed to tubular assemblies capable of rigidifying the solvents when subjected to ultrasound irradiation.  相似文献   
995.
996.
3′,5′‐Dimethoxybenzoin (DMB) is a bichromophoric system that has widespread application as a highly efficient photoremovable protecting group (PRPG) for the release of diverse functional groups. The photodeprotection of DMB phototriggers is remarkably clean, and is accompanied by the formation of a biologically benign cyclization product, 3′,5′‐dimethoxybenzofuran (DMBF). The underlying mechanism of the DMB deprotection and cyclization has, however, until now remained unclear. Femtosecond transient absorption (fs‐TA) spectroscopy and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopy were employed to detect the transient species directly, and examine the dynamic transformations involved in the primary photoreactions for DMB diethyl phosphate (DMBDP) in acetonitrile (CH3CN). To assess the electronic character and the role played by the individual sub‐chromophore, that is, the benzoyl, and the di‐meta‐methoxybenzylic moieties, for the DMBDP deprotection, comparative fs‐TA measurements were also carried out for the reference compounds diethyl phosphate acetophenone (DPAP), and 3′,5′‐dimethoxybenzylic diethyl phosphate (DMBnDP) in the same solvent. Comparison of the fs‐TA spectra reveals that the photoexcited DMBDP exhibits distinctly different spectral character and dynamic evolution from those of the reference compounds. This fact, combined with the related steady‐state spectral and density functional theoretical results, strongly suggests the presence in DMBDP of a significant interaction between the two sub‐chromophores, and that this interaction plays a governing role in determining the nature of the photoexcitation and the reaction channel of the subsequent photophysical and photochemical transformations. The ns‐TR3 results and their correlation with the fs‐TA spectra and dynamics provide evidence for a novel concerted deprotection–cyclization mechanism for DMBDP in CH3CN. By monitoring the direct generation of the transient DMBF product, the cyclization time constant was determined unequivocally to be ≈1 ns. This indicates that there is little relevance for the long‐lived intermediates (>10 ns) in giving the DMBF product, and excludes the stepwise mechanism proposed in the literature as the major pathway for the DMB cyclization reaction. This work provides important new insights into the origin of the 3′,5′‐dimethoxy substitution effect for the DMB photodeprotection. It also helps to clarify the many different views presented in previous mechanistic studies of the DMB PRPGs. In addition to this, our fs‐TA results on the reference compound DMBnDP in CH3CN provide the first direct observation (to the best of our knowledge) showing the predominance of a prompt (≈2 ps) heterolytic bond cleavage after photoexcitation of meta‐methoxybenzylic compounds. This provides insight into the long‐term controversies about the photoinitiated dissociation mode of related substituted benzylic compounds.  相似文献   
997.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   
998.
The redox‐active and chelating diphosphine, 3,4‐dimethyl‐3′,4′‐bis(diphenylphosphino)‐tetrathiafulvalene, denoted as P2 , is engaged in a series of platinum complexes, [(P2)Pt(dithiolene)], with different dithiolate ligands, such as 1,2‐benzenedithiolate (bdt), 1,3‐dithiole‐2‐thione‐4,5‐dithiolate (dmit), and 5,6‐dihydro‐1,4‐dithiin‐2,3‐dithiolate (dddt). The complexes are structurally characterized by X‐ray diffraction, together with a model compound derived from bis(diphenylphosphino)ethane, namely, [(dppe)Pt(dddt)] . Four successive reversible electron‐transfer processes are found for the [(P2)Pt(dddt)] complex, associated with the two covalently linked but electronically uncoupled electrophores, that is, the TTF core and the platinum dithiolene moiety. The assignments of the different redox processes to either one or the other electrophore is made thanks to the electrochemical properties of the model compound [(dppe)Pt(dddt)] lacking the TTF redox core, and with the help of theoretical calculations (DFT) to understand the nature and energy of the frontier orbitals of the [(P2)Pt(dithiolene)] complexes in their different oxidation states. The first oxidation of the highly electron‐rich [(P2)Pt(dddt)] complex can be unambiguously assigned to the redox process affecting the Pt(dddt) moiety rather than the TTF core, a rare example in the coordination chemistry of tetrathiafulvalenes acting as ligands.  相似文献   
999.
An efficient tandem reaction for the asymmetric synthesis of six‐membered spirocyclic oxindoles has been successfully developed through a formal [2+2+2] annulation strategy. The amine‐catalysed stereoselective Michael addition of aliphatic aldehydes to electron‐deficient olefinic oxindole motifs gave chiral C3 components, which were further combined with diverse electrophiles (activated olefins or imines) to afford spirocyclic oxindoles with versatile molecular complexity (up to six contiguous stereogenic centres, high diastereo‐ and enantioselectivities).  相似文献   
1000.
Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron‐transfer rates for a wide variety of compounds such as FeCl3, ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of β‐nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号