首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   26篇
化学   356篇
晶体学   1篇
力学   3篇
数学   59篇
物理学   48篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   17篇
  2014年   13篇
  2013年   30篇
  2012年   20篇
  2011年   30篇
  2010年   22篇
  2009年   16篇
  2008年   25篇
  2007年   20篇
  2006年   24篇
  2005年   20篇
  2004年   20篇
  2003年   14篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   10篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1974年   2篇
  1944年   1篇
  1932年   1篇
  1924年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
21.
Interaction‐induced static electric properties, that is, dipole moment, polarizability, and first hyperpolarizability, of the CO? (HF)n and N2? (HF)n, n = 1–9 hydrogen‐bonded complexes are evaluated within the finite field approach using the Hartree–Fock, density functional theory, Møller–Plesset second‐order perturbation theory, and coupled cluster methods, and the LPol‐n (n = ds, dl, fs, fl) basis sets. To compare the performance of the different methods with respect to the increase of the complex size, we consider as model systems linear chains of the complexes. We analyze the results in terms of the many‐body and cooperative effects. © 2012 Wiley Periodicals, Inc.  相似文献   
22.
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed.  相似文献   
23.
Colloidal suspensions are susceptible to gravitationally induced phase separation. This can be mitigated by the formation of a particle network caused by depletion attraction. The effectiveness of this network in supporting the buoyant weight of the suspension can be characterized by its compressional modulus. We measure the compressional modulus for emulsion networks induced by depletion attraction and present a model that quantitatively predicts their gravitational stability. We also determine the relationship between the strength of the depletion attraction and the magnitude of the compressional modulus.  相似文献   
24.
Within the scope of accurate structure-property correlations in biomolecules, this work investigates how conformations and electronic configurations of biologically relevant macromolecules affect their intermolecular potentials. With the purpose of testing the suitability of a simple and universal model, the dipeptides are made from the assembly of their building blocks, namely the amino acid residuals or, more finely tuned, the individual functional groups. The model makes use of functional-group electrostatic potentials (GEP) and distributed polarizabilities (GDP), which enable an in depth analysis of the correlation between structural features and property build-up. GEPs and GDPs are calculated for various conformers and protonation states of L-alanyl-L-alanine, glycyl-L-alanine, L-alanylglycine, and glycylglycine, which are prototypic molecules to model the pertinent functional groups. The model provides GEPs that reproduce the exact potential to an average accuracy of ca. 0.05 au. The good agreement between the properties estimated with the simple model and those calculated with state-of-the-art quantum chemical methods encourages further testing of the predictive power of this model, simulating for example interaction energies and optoelectronic properties.  相似文献   
25.
26.
Although extracts are broadly used in order to support the treatment of numerous diseases, only in a limited number of cases is the process of applying and establishing their mechanisms of action scientifically analyzed. Fruits of Cornelian cherry are an abundant source of iridoids, anthocyanins, flavonols and phenolic acids. The aim of the present study was to evaluate the in vitro bioactivity of red and yellow Cornelian cherry fruits’ extracts. The biological potential of extracts, in a broad sense, involved antioxidant activity in relation to phosphatidylcholine liposomes, inhibitory ability against α-glucosidase and acetylcholinesterase enzymes, as well as interactions with human serum albumin. Studies showed that both extracts were more effective in protecting liposome membranes against free radicals produced by AAPH in an aqueous environment due to the fact that they can be better eliminated by the hydrophilic components of the extracts than those produced by UVB radiation. Extracts exhibited inhibitory activity against acetylcholinesterase and α-glucosidase, wherein loganic acid extract showed noncompetitive inhibition of the enzyme. Moreover, extracts binded to albumin mainly through hydrogen bonds and van der Waals forces. Taken together, red and yellow cherry fruits’ extracts exhibit diverse biological properties and can be exploited as a source of natural therapeutic agents.  相似文献   
27.
28.
The article presents the modification of ash wood via surface initiated activators regenerated by electron transfer atom transfer radical polymerization mediated by elemental silver (Ag0 SI-ARGET ATRP) at a diminished catalyst concentration. Ash wood is functionalized with poly(methyl methacrylate) (PMMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to yield wood grafted with PMMA-b-PDMAEMA-Br copolymers with hydrophobic and antibacterial properties. Fourier transform infrared (FT-IR) spectroscopy confirmed the covalent incorporation of functional ATRP initiation sites and polymer chains into the wood structure. The polymerization kinetics was followed by the analysis of the polymer grown in solution from the sacrificial initiator by proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). The polymer layer covalently attached to the wood surface was observed by scanning electron microscopy (SEM). The hydrophobic properties of hybrid materials were confirmed by water contact angle measurements. Water and sodium chloride salt aqueous solution uptake tests confirmed a significant improvement in resistance to the absorption of wood samples after modification with polymers. Antibacterial tests revealed that wood-QPDMAEMA-Br, as well as wood-PMMA-b-QPDMAEMA-Br, exhibited higher antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) in comparison with Gram-negative bacteria (Escherichia coli). The paper presents an economic concept with ecological aspects of improving wood properties, which gives great opportunities to use the proposed approach in the production of functional hybrid materials for industry and high quality sports equipment, and in furniture production.  相似文献   
29.
30.
Double-quantum filtered MAS NMR spectra of an isolated homonuclear spin-1/2 pair are considered, at and away from rotational resonance conditions. The pulse sequence used is the solid-state NMR equivalent of double-quantum filtered COSY, known from solution-state NMR. The 119Sn spin pair in [(chex3Sn)2S] is characterized by a difference in isotropic chemical shielding smaller than the two chemical shielding anisotropies and by direct dipolar and isotropic J-coupling constants of similar magnitudes. At rotational resonance, one-dimensional double-quantum filtered 119Sn lineshapes yield the relative orientation of the two 119Sn chemical shielding tensors. Good double-quantum filtration efficiencies are found at and away from rotational resonance conditions, despite the presence of large chemical shielding anisotropies. Numerical simulations illustrate the interplay of the direct dipolar and J-coupling pathways and identify the latter as the main pathway even at rotational resonance conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号