首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   27篇
化学   355篇
晶体学   1篇
力学   3篇
数学   59篇
物理学   48篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   17篇
  2014年   13篇
  2013年   30篇
  2012年   20篇
  2011年   30篇
  2010年   22篇
  2009年   16篇
  2008年   25篇
  2007年   20篇
  2006年   24篇
  2005年   20篇
  2004年   20篇
  2003年   14篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   10篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1974年   2篇
  1944年   1篇
  1932年   1篇
  1924年   1篇
排序方式: 共有466条查询结果,搜索用时 0 毫秒
101.
102.
Abstract– Action spectra of the light-dependent behavior of Halobacterium and the effect of background light have been measured with regard to the current hypothesis of Spudich and Bogomolni [Nature 312 ,509–513 (1984)], which proposes sensory rhodopsin I (sRI587) to be the receptor for long-wavelength light, and its photoproduct S373 to be the receptor for UV light. The action spectrum shows three maxima for attractant responses (prolonged swimming intervals) at 565, 590, and 610 nm, and two maxima for repellent responses (shortened intervals) at 370 and 480 nm. The latter is assigned to sensory rhodopsin II (P-480). All peaks are red-shifted after substitution of the endogeneous retinal by 3, 4-dehydroretinal. The peaks at 590 and 610 nm are suppressed by long-wavelength background light. Ultraviolet background light converts all attractant peaks into repellent peaks. The response at 370 nm is strongly activated by visible background light, the maximal effect occurring with 510 nm. The activated state declines with a half-life of about 1.2 s. In a growing culture, full sensitivity to UV and blue light is restored about 10 h earlier than sensitivity to long-wavelength light. Some of the results cannot easily be explained by the sRI587/S373 hypothesis. Explanations for the three maxima in the long-wavelength range and for the maximal activation of the UV response by 510 nm light are discussed.  相似文献   
103.
104.
Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) has been used for investigating the influence of the sulfur containing amino acid L-methionine (L-Met) on the binding behavior of oxaliplatin (trans-R,R-diaminocyclohexane-(oxalato)platinum(II)) to 5'-GMP. L-Methionine competes with 5'-GMP for the platinum binding site and forms as well as 5'-GMP adducts with oxaliplatin. The formation of the prognosed complexes [Pt(DACH)(L-Met-S,N)]+ and [Pt(DACH)(5'-GMP)2]2- (DACH = 1,2-diaminocyclohexane) could be proved directly by using CE-ESI-MS. Furthermore, we could now bring forward proofs, that the coordination of 5'-GMP with oxaliplatin is inhibited by L-methionine and could show, that the 5'-GMP ligands of the [Pt(DACH) (5'-GMP)2]2- complex can be replaced slowly by L-methionine whereas methionine can not be replaced by GMP.  相似文献   
105.
Ice of Antarctic ice shelves is assumed to behave on long-term as an incompressible viscous fluid, which is dominated on short time scales by the elastic response. Hence, a viscoelastic material model is required. The thermodynamic pressure is treated differently in elastic and viscous models. For small deformations, the elastic isometric stress for ν → 0.5 gives similar results to those solving for pressure in an incompressible laminar flow model. A viscous model, in which the thermodynamic pressure is approximated by an elastic isometric stress, can be easily extended to viscoelasticity. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
106.
Enantioenriched tertiary homoallylic alcohol derivatives (S)-2c and (S)-2a were obtained via Evans aldol methodology and enzymatic resolution of racemic tertiary acetate 2e, respectively. In order to study asymmetric 1,3-induction of the stereogenic center present in 2, congener (R)-2a as well as its O-protected derivatives (R)-2b-d were submitted to Sharpless asymmetric dihydroxylation to yield the diastereomeric 1,2,4-triol derivatives (2R,4R)- and (2S,4R)-3a-d, revealing that neither the substrate nor the Sharpless catalyst exert any stereocontrol. Similar observations were made for the less bulky alkynyl-substituted derivative 12b. However, by using a directed dihydroxylation, the anti product (2R,4R)-3a was favored.  相似文献   
107.
Emulsion templating using high internal phase emulsions is an effective route to prepare low density and high porosity macroporous polymers known as polymerized high internal phase emulsions (polyHIPEs). Conventional polyHIPEs, synthesized from surfactant stabilized w/o emulsions have low permeabilities and poor mechanical properties. We present interconnected open macroporous low density nanocomposites produced by polymerizing the continuous phase of emulsion templates, which contained styrene, polyethyleneglycoldimethacrylate, and silylated silica particles. Polyethyleneglycoldimethacrylate and the silylated silica particles acted as crosslinker. The functionalized silica particles were incorporated into the polymer, which resulted in a significant improvement of the mechanical properties of the polyHIPEs without affecting the interconnected and permeable pore structures. The polyHIPEs contained up to 60 wt % silylated silica particles. Young's modulus of the reinforced macroporous polymers increased up to 600% compared with nonreinforced macroporous polymers. The mechanical performance was further increased by increasing the foam density of the macroporous nanocomposites from around 200 to 370 g/cm3 by raising the organic phase volume of the emulsion templates from 20 to 40 vol %. The macroporous polymers synthesized from less concentrated emulsions also possessed interconnected open porous although less permeable structures. The polyHIPE nanocomposites have a permeability of about 200 mD, whereas the polyMIPE nanocomposites still have permeabilities of around 50 mD. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1979–1989, 2010  相似文献   
108.
Knowledge of the optical properties of human skin in the ultraviolet range is fundamental for photobiologic research. However, optical properties of human skin in the ultraviolet spectral range have so far mainly been measured ex vivo . We have determined the absorption spectra of human skin in vivo in the wavelength range from 290 to 341 nm in 3 nm steps using laser optoacoustics. In this technique, optical properties are derived from the pressure profile generated by absorbed light energy in the sample. In a study on 20 subjects belonging to phototypes I–IV, we studied the optical properties at the volar and dorsal aspect of the forearm as well as on the thenar. Analysis of the measured absorption spectra shows that comparable skin areas—like different sides of the forearm—have qualitatively similar optical characteristics. Still, the optical properties may vary substantially within the same area, probably due to the skin structure and inhomogeneities. Comparison of the spectra from different skin sites indicates that the spectral characteristics of the stratum corneum and its chromophores play an important role for the optical properties of human skin in vivo in the ultraviolet B range.  相似文献   
109.
Dibenzo[18]crown‐6 derivatives 1 with two lateral tetraalkyloxy o‐terphenyl units were prepared and converted to the corresponding complexes KX ?1 (X=halide, BF4, PF6, SCN) and NH4PF6 ?1 . Complexation was probed by MALDI‐TOF spectrometry and NMR spectroscopy. Downfield shifts of 1H NMR signals for complexes with soft anions Br, I, SCN, and PF6 indicated the presence of tight ion pairs, whereas complexes with hard anions F, Cl, or BF4 showed no or little shifts. In 13C NMR spectra, upfield shifts were detected for soft anions. The character of the anion also influenced the mesomorphic properties of complexes MX ?1 (M=K, NH4), which were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and XRD in comparison to neat 1 . Hard anions slightly stabilize or even destabilize the mesophase. Soft anions, however, improve the mesomorphic properties yielding mesophases with up to 70 °C phase widths in the case of KI ?1 , KPF6 ?1 , and NH4PF6 ?1 . For complexes KSCN ?1 with a soft and bridging anion, the balance between mesophase stabilization and high order is shifted in favor of the plastic crystal phase.  相似文献   
110.
Self-assembly represents a promising strategy for surface functionalisation as well as creating nanostructures with well-controlled, tailor-made properties and functionality. Molecular self-assembly at solid surfaces is governed by the subtle interplay between molecule–molecule and molecule–substrate interactions that can be tuned by varying molecular building blocks, surface chemistry and structure as well as substrate temperature.In this review, basic principles behind molecular self-assembly of organic molecules on metal surfaces will be discussed. Controlling these formation principles allows for creating a wide variety of different molecular surface structures ranging from well-defined clusters, quasi one-dimensional rows to ordered, two-dimensional overlayers. An impressive number of studies exist, demonstrating the ability of molecular self-assembly to create these different structural motifs in a predictable manner by tuning the molecular building blocks as well as the metallic substrate.Here, the multitude of different surface structures of the natural amino acid cysteine on two different gold surfaces observed with scanning tunnelling microscopy will be reviewed. Cysteine on Au(110)-(1×2) represents a model system illustrating the formation of all the above mentioned structural motifs without changing the molecular building blocks or the substrate surface. The only parameters in this system are substrate temperature and molecular coverage, controlling both the molecular adsorption state (physisorption versus chemisorption) and molecular surface mobility. By tuning the adsorption state and the molecular mobility, distinctly different molecular structures are formed, exemplifying the variety of structural motifs that can be achieved by molecular self-assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号