首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2252篇
  免费   50篇
  国内免费   11篇
化学   1612篇
晶体学   14篇
力学   42篇
数学   296篇
物理学   349篇
  2023年   17篇
  2022年   40篇
  2021年   51篇
  2020年   52篇
  2019年   38篇
  2018年   35篇
  2017年   22篇
  2016年   67篇
  2015年   45篇
  2014年   58篇
  2013年   103篇
  2012年   154篇
  2011年   143篇
  2010年   81篇
  2009年   57篇
  2008年   135篇
  2007年   157篇
  2006年   128篇
  2005年   127篇
  2004年   101篇
  2003年   97篇
  2002年   85篇
  2001年   29篇
  2000年   25篇
  1999年   19篇
  1998年   22篇
  1997年   30篇
  1996年   32篇
  1995年   15篇
  1994年   27篇
  1993年   23篇
  1992年   25篇
  1991年   20篇
  1990年   21篇
  1989年   16篇
  1988年   8篇
  1986年   13篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   8篇
  1981年   10篇
  1980年   14篇
  1979年   8篇
  1978年   6篇
  1977年   16篇
  1976年   7篇
  1975年   7篇
  1973年   6篇
  1972年   7篇
排序方式: 共有2313条查询结果,搜索用时 15 毫秒
71.
72.
The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In order to gain new insight into the protein membrane alteration leading to the viral fusion mechanism, a peptide pertaining to the putative pre-transmembrane domain (PTM) of the S glycoprotein has been studied by infrared and fluorescence spectroscopies regarding its structure, its ability to induce membrane leakage, aggregation, and fusion, as well as its affinity toward specific phospholipids. We demonstrate that the SARS-CoV PTM peptide binds to and interacts with phospholipid model membranes, and, at the same time, it adopts different conformations when bound to membranes of different compositions. As it has been already suggested for other viral fusion proteins such as HIV gp41, the region of the SARS-CoV protein where the PTM peptide resides could be involved in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the SARS-CoV S glycoprotein to heighten the fusion process and therefore might be essential for the assistance and enhancement of the viral and cell fusion process.  相似文献   
73.
Relaxation compensated Carr-Purcell-Meiboom-Gill (rc-CPMG) NMR experiments have been used to investigate micros-ms motions in heme oxygenase from Pseudomonas aeruginosa (pa-HO) in its ferric state, inhibited by CN- (pa-HO-CN) and N3- (pa-HO-N3), and in its ferrous state, inhibited by CO (pa-HO-CO). Comparative analysis of the data from the three forms indicates that the nature of the coordinated distal ligand affects the micros-ms conformational freedom of the polypeptide in regions of the enzyme far removed from the heme iron and distal ligand. Interpretation of the dynamical information in the context of the crystal structure of resting state pa-HO shows that residues involved in the network of structural hydrogen-bonded waters characteristic of HOs undergo micros-ms motions in pa-HO-CN, which was studied as a model of the highly paramagnetic S = 5/2 resting state form. In comparison, similar motions are suppressed in the pa-HO-CO and pa-HO-N3 complexes, which were studied as mimics of the obligatory oxyferrous and ferric hydroperoxide intermediates, respectively, in the catalytic cycle of heme degradation. These findings suggest that in addition to proton delivery to the nascent Fe(III)-OO(-) intermediate during catalysis, the hydrogen-bonding network serves two additional roles: (i) propagate the electronic state (reactive state) in each of the distinct steps of the catalytic cycle to key but remote sections of the polypeptide via small rearrangements in the network of hydrogen bonds and (ii) modulate the conformational freedom of the enzyme, thus allowing it to adapt to the demanding changes in axial coordination state and substrate transformations that take place during the catalytic cycle. This idea was probed by disrupting the hydrogen-bonding network in pa-HO by replacing R80 with L. NMR spectroscopic studies conducted with R80L-pa-HO-N3 and R80L-pa-HO-CO revealed that the mutant exhibits nearly global conformational disorder, which is absent in the equivalent complexes of the wild type enzyme. The "chaotic" disorder in the R80L mutant is likely related to its significantly lower efficiency to hydroxylate heme in the presence of H2O2, relative to the wild type enzyme.  相似文献   
74.
Na9[FeO3][FeO4]a Mixed Valent Oxoferrat(II, III) with Isolated [FeO3]4— — and [FeO4]5— Anions Na9[FeO3][FeO4] has been formed and obtained from a redox reaction between CdO and iron metal (reaction container) and Na2O in the presence of NaOH at 450 °C as orange‐red transparent single crystals. The crystal structure determination (IPDS data: Pca21, a = 956.2(2) pm, b = 999.1(2) pm, c = 1032.3(2) pm, Z = 4, Rall = 0.0455) reveals the presence of isolated complex anions, [FeO3]4— and [FeO4]5—.  相似文献   
75.
In this paper we generalize the IR spectroscopic properties of M3+VO4 (M=Fe, In) orthovanadate and Fe2V4O13 films. The films were prepared using the sol-gel synthesis route from M3+ nitrates and vanadium oxoisopropoxide. The vibrational bands in the IR absorbance spectra of the films are classified in terms of terminal V-O stretching (1050–880 cm–1), bridging V-O...Fe and V...O...Fe stretching (880–550 cm–1), mixed V-O-V deformations and Fe-O stretching (<550 cm–1) modes. Ex situ IR spectra of films were measured after consecutive charging/discharging to various intercalation coefficients x and correlated to the current peaks in the cyclic voltammetry curves measured in 1 M LiClO4/propylene carbonate electrolyte. We classified the ex situ IR spectra of charged/discharged films according to their vibrational band changes. The results reveal that, for small values of the intercalation coefficient, crystalline FeVO4, InVO4 and Fe2V4O13 films exhibit a simultaneous decrease in the intensity of all IR bands while the band frequencies remain unaffected. For the higher intercalation levels, IR mode frequencies are shifted, signaling the presence of reduced vanadium. Further charging leads to an amorphization of the film structure, which was established from the similarity of the IR spectra of charged films with those of amorphous films prepared at lower annealing temperatures. The results confirm that ex situ IR spectroelectrochemical measurement is an effective way to assess the structural changes in films with different levels of intercalation. Electronic Publication  相似文献   
76.
Journal of Radioanalytical and Nuclear Chemistry - An international group of laboratories participating in CMX-4 subjected three samples to comparative nuclear forensic analysis using uranium assay...  相似文献   
77.
Dendrimers are macromolecules characterized by high controlled size, shape and architecture, presence of inner cavities able to accommodate small molecules and many peripheral functional groups to bind target entities. They are of eminent interest for biomedical applications, including gene transfection, tissue engineering, imaging, and drug delivery. The well-known pharmacological activities of ursolic and oleanolic acids are limited by their small water solubility, non-specific cell distribution, low bioavailability, poor pharmacokinetics, and their direct administration could result in the release of thrombi. To overcome such problems, in this paper we described their physical incorporation inside amino acids-modified polyester-based dendrimers which made them highly water-soluble. IR, NMR, zeta potential, mean size of particles, buffer capacity and drug release profiles of prepared materials were reported. The achieved water-soluble complexes harmonize a polycationic character and a buffer capacity which presuppose efficient cell penetration and increased residence time with a biodegradable cell respectful scaffold, thus appearing as a promising team of not toxic prodrugs for safe administration of ursolic and oleanolic acids.  相似文献   
78.
Ambrosia artemisiifolia L. is responsible for serious allergies induced on humans. Different approaches for its control were proposed during the COST Action FA1203 “Sustainable management of Ambrosia artemisiifolia in Europe” (SMARTER). Fungal secondary metabolites often show potential herbicidal activity. Three phytotoxins were purified from the fungal culture filtrates of Colletotrichum gloeosporioides, isolated from infected leaves of A. artemisiifolia. They were identified by spectroscopic and chemical methods as colletochlorin A, orcinol and tyrosol (1, 2 and 3). The absolute configuration 6’R to colletochlorin A was assigned for the first time applying the advanced Mosher’s method. When assayed by leaf-puncture on A. artemisiifolia only 1 caused the appearance of large necrosis. The same symptoms were also induced by 1 on ambrosia plantlets associated with plant wilting. On Lemna minor, colletochlorin A caused a clear fronds browning, with a total reduction in chlorophyll content.  相似文献   
79.
New Alkali Cyclosilicates: Cs5AgSi3O9 and Cs6Na6Si6O18 The new cyclosilicates were obtained from reactions of the binary oxides at 450–500 °C under inert gas atmosphere. Cs5AgSi3O9 crystallizes in the space group P21/m with the lattice constants a = 968,2(2) pm, b = 652,7(1) pm, c = 1162,6(3) pm, β = 93,84(2)° and Cs6Na6Si6O18 in R‐3m with a = 1208,0(1) pm, c = 1458,9(2) pm (IPDS data sets). The characteristic features are isolated rings, [Si3O9]6– and [Si6O18]12–, respectively. In Cs5AgSi3O9 these are connected via Ag+ to chains. Layers of [NaO4]‐tetrahedra separate the hexameric rings in Cs6Na6Si6O18. Coordination numbers of caesium are observed between C.N. 3 and C.N. 9 in these alkali rich cyclosilicates. MAPLE calculations of both cyclosilicates as well as the absorption and IR spectrum of Cs5AgSi3O9 are presented. Preparative and thermoanalytical techniques have been used to investigate the reactivity of Cs5AgSi3O9 in the presence of cobalt and nickel metal.  相似文献   
80.
Mesoporous silicon is a biocompatible, biodegradable material that is receiving increased attention for pharmaceutical applications due to its extensive specific surface. This feature enables to load a variety of drugs in mesoporous silicon devices by simple adsorption-based procedures. In this work, we have addressed the fabrication and characterization of two new mesoporous silicon devices prepared by electrochemistry and intended for protein delivery, namely: (i) mesoporous silicon microparticles and (ii) chitosan-coated mesoporous silicon microparticles. Both carriers were investigated for their capacity to load a therapeutic protein (insulin) and a model antigen (bovine serum albumin) by adsorption. Our results show that mesoporous silicon microparticles prepared by electrochemical methods present moderate affinity for insulin and high affinity for albumin. However, mesoporous silicon presents an extensive capacity to load both proteins, leading to systems were protein could represent the major mass fraction of the formulation. The possibility to form a chitosan coating on the microparticles surface was confirmed both qualitatively by atomic force microscopy and quantitatively by a colorimetric method. Mesoporous silicon microparticles with mean pore size of 35 nm released the loaded insulin quickly, but not instantaneously. This profile could be slowed to a certain extent by the chitosan coating modification. With their high protein loading, their capacity to provide a controlled release of insulin over a period of 60-90 min, and the potential mucoadhesive effect of the chitosan coating, these composite devices comprise several features that render them interesting candidates as transmucosal protein delivery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号