首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80488篇
  免费   361篇
  国内免费   407篇
化学   25570篇
晶体学   847篇
力学   6772篇
数学   32535篇
物理学   15532篇
  2022年   49篇
  2021年   64篇
  2019年   36篇
  2018年   10446篇
  2017年   10288篇
  2016年   6119篇
  2015年   906篇
  2014年   365篇
  2013年   504篇
  2012年   3877篇
  2011年   10608篇
  2010年   5717篇
  2009年   6144篇
  2008年   6718篇
  2007年   8864篇
  2006年   344篇
  2005年   1402篇
  2004年   1643篇
  2003年   2045篇
  2002年   1098篇
  2001年   289篇
  2000年   327篇
  1999年   191篇
  1998年   228篇
  1997年   193篇
  1996年   249篇
  1995年   145篇
  1994年   108篇
  1993年   133篇
  1992年   79篇
  1991年   92篇
  1990年   82篇
  1989年   89篇
  1988年   78篇
  1987年   83篇
  1986年   75篇
  1985年   76篇
  1984年   83篇
  1983年   60篇
  1982年   65篇
  1981年   68篇
  1980年   69篇
  1979年   65篇
  1978年   54篇
  1977年   47篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this work, a simple way for study the possibility of formation a vapor cluster species of tetrachloroauric acid (HAuCl4), using the laser ablation in the absence of a buffer or reactive atmosphere, and without a postablation supersonic expansion on a commercial matrix assisted laser desorption/ionization time-of-flight mass spectrometer, is reported. Tetrachloroauric acid is known as precursor for the synthesis of gold nanostructures and the complex salts; therefore it is an important task to discover and quantify the species arising from HAuCl4, in order to understand their role in the gold assisted reactions. Mass spectrum of HAuCl4 in a reflector negative-ion mode contains the hydrated mono- and dinuclear gold clusters in the m/z range 286–436, and gold chloride clusters in the m/z range 447–795. In the first part of spectrum, m/z range 286–436, the hydrated gold cluster species of type Au n ? (H2O)m (n?=?1–2; m?=?1, 2, 5, 7, 8) and [Aun(OH)k]?(H2O)m (n?=?1–2; k?=?1–2; m?=?1, 4–8) were found. Besides that, there are gold chloride clusters with general formula [AuHr(HCl)2]?(H2O)m (m?=?1–5; 8–9; r?=?0–2) in this part of spectrum. In the second part of spectrum, the m/z range 447–795, only gold chloride clusters were obtained. Their general formulae can be written as [AuClt(HCl)v]?(H2O)m (t?=?1–4; v?=?5–8; m?=?2–4, 6–8) and [Aun(HCl)v]?(H2O)m (n?=?1–2, v?=?4–5, m?=?1–2, 5, 7). The analysis of concentration effects on the LDI mass spectra of gold clusters reveals that the relative intensities of signals for the mono- and dinuclear Au clusters increase with decreasing the concentration of water HAuCl4 solutions.  相似文献   
992.
Total absorption is realized theoretically in a graphene-outside-cavity resonator. The structure is composed of the FP-Fano hybrid resonance cavity. Changing the thickness of grating exciting Fano resonance, the absorption-mode number can be tuned effectively. For the focused double-mode absorption, the resonances behave insensitively with the variation of chemical potential of graphene. Varying the geometry of grating can control the coupling extent of two modes. Also, by manipulating the period number of two-side multilayers around graphene, the absorption, shift and number of modes are governed.  相似文献   
993.
We present a comparative analysis of the conduction band edge of the alkali earth metal bismuthates containing Mg, Ca, Sr, and Ba. The conduction band edges were computed using the method suggested by Butler and Ginley. The calculations reveal that they depend on the bismuthate’s composition and vary over a wide range. We demonstrate that the energy of the conduction band increases in the series Ca?→?Sr?→?Ba. It also increases with an increase of the alkali earth metal content. The performed calculations help to determine the potential alkali earth metal bismuthate photocatalysts. The most promising compositions found in this study include strontium and barium bismuthates in which the number of the alkali earth metal atoms in the cationic sublattice exceeds the number of the bismuth atoms.  相似文献   
994.
Dark solitons are the subject of intense theoretical and experimental studies in nonlinear optics due to their unique characteristics compared with bright solitons. In this paper, the variable coefficient high-order nonlinear Schrödinger equation in the inhomogeneous optical fiber is investigated. Via the Hirota bilinear method and symbolic computation, the analytic dark two-soliton solutions are obtained. With the suitable choices of functions and coefficients for the obtained dark two-soliton solutions, some new phenomena are presented for the first time. The influences on phases and amplitudes of soliton interactions are detailed analyzed. Moreover, sets of double-triangle structures and methods of changing the propagation direction of dark solitons are introduced. Finally, by choosing suitable functions of the fourth-order dispersion parameter, the arch-structure and M-structure interactions are revealed. Results may be potentially useful in designing all-optical switches and optical fibers.  相似文献   
995.
In this paper, femtosecond optical pulses compression and supercontinuum generation in a triangular silicon photonic crystal fiber at 2500 nm are investigated. A region of large minimum anomalous group velocity dispersion, negligible higher order dispersions and unique nonlinearity of silicon are used to demonstrate compression of 100 fs initial input optical pulses to 2.5 fs and ultra-broadband supercontinuum generation with very low input pulse energy over short distances of the fiber.  相似文献   
996.
In this paper we experimentally examine the dependence of the injection-locked range magnitude of a Fabry–Pérot (FP) laser on the linewidth of a seed laser. We measure the enhancement of the incident-power-dependent injection-locked range when changing the seed-light linewidth in three different ranges, starting with tens of GHz, then hundreds of MHz, and up to a few hundred kHz. We notice the progressive shrinkage of the locking range with an increase in the linewidth of the seed source. Simultaneously, the linewidth of a FP laser was measured and the cancellation of multiple longitudinal operating modes as well as a great reduction of linewidth are observed with a self-homodyne measurement.  相似文献   
997.
998.
The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.  相似文献   
999.
正In 2007,superconducting nanowire single photon detectors(SSPD or SNSPD)[1]made an outstanding impact in the field of quantum information technology by demonstrating quantum key distribution(QKD)over a 200-km optical fiber with a 42-dB optical loss using a practical SNSPD system[2].This successful demonstration was realized thanks to its extremely  相似文献   
1000.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号