首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   14篇
  国内免费   1篇
化学   285篇
力学   5篇
数学   36篇
物理学   101篇
  2024年   1篇
  2022年   16篇
  2021年   6篇
  2020年   4篇
  2019年   12篇
  2018年   12篇
  2017年   5篇
  2016年   11篇
  2015年   14篇
  2014年   18篇
  2013年   22篇
  2012年   23篇
  2011年   31篇
  2010年   32篇
  2009年   22篇
  2008年   30篇
  2007年   42篇
  2006年   27篇
  2005年   31篇
  2004年   12篇
  2003年   13篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
81.
82.
Surface segregation of iodide, but not of fluoride or cesium ions, is observed by a combination of metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS(HeI)) of amorphous solid water exposed to CsI or CsF vapor. The same surface ionic behavior is also derived from molecular dynamics (MD) simulations of the corresponding aqueous salt solutions. The MIES results show the propensity of iodide, but not fluoride, for the surface of the amorphous solid water film, providing thus strong evidence for the suggested presence of heavier halides (iodide, bromide, and to a lesser extent chloride) at the topmost layer of aqueous surfaces. In contrast, no appreciable surface segregation of ions is observed in methanol, neither in the experiment nor in the simulation. Furthermore, the present results indicate that, as far as the thermodynamic aspects of solvation of alkali halides are concerned, amorphous solid water and methanol surfaces behave similarly as surfaces of the corresponding liquids.  相似文献   
83.
We address the applicability of the continuous-variables quantum key distribution in the realistic conditions of noisy preparation, channel loss and detection noise and investigate the possibility to increase its tolerance to the state preparation noise. The two types of preparation noise, either phase-sensitive or phase-insensitive excess noise, are considered in the assumption of optimal attacks performed by an eavesdropper within the setup based on the entangled source and either homodyne or heterodyne measurements. We show that preparation noise is destructive for the secure channel upon even low noise variances in the conditions of channel loss, while detection noise just decreases the key rate. We propose the method of sender-side attenuation to suppress the preparation noise in the entanglements-based scheme and show that it enables the secure key transmission upon arbitrary high preparation noise of both types and any pure channel loss against both individual and collective attacks.  相似文献   
84.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   
85.
86.
A possible way for the consistent probability interpretation of the Klein-Gordon equation is proposed. It is assumed that some states of a scalar charged particle cannot be physically realized. The rest of quantum states are proven to have positive-definite probability distributions.  相似文献   
87.
The hydration structures and dynamics of naphthalene in aqueous solution are examined using molecular-dynamics simulations. The simulations are performed at several state points along the coexistence curve of water up to the critical point, and above the critical point with the density fixed at 0.3 g/cm(3). Spatial maps of local atomic pair-density are presented which show a detailed picture of the hydration shell around a bicyclic aromatic structure. The self-diffusion coefficient of naphthalene is also calculated. It is shown that water molecules tend to form pi-type complexes with the two aromatic regions of naphthalene, where water acts as the H-bond donor. At ambient conditions, the hydration shell of naphthalene is comprised, on average, of about 39 water molecules. Within this shell, two water molecules can be identified as pi-coordinating, forming close to one H-bond to the aromatic rings. With increasing temperature, the hydration of naphthalene changes dramatically, leading to the disappearance of the pi-coordination near the critical point.  相似文献   
88.
Oscillations of the aggregate sizes of SiO2 particles covered by an adsorbed layer of poly(vinylpyridine) (PVP) at pH 3 with a periodicity of about 15 h were observed using a particle counting technique. The same oscillation was found for the contact angle values of water on the surface of Si wafers (with top silica layer) covered by adsorbed PVP as a function of exposure time in a PVP water solution.  相似文献   
89.
We report on double-differential inclusive cross sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% λ abs thick stationary tantalum target, of proton and pion beams with momentum from ±3 GeV/c to ±15 GeV/c. Results are given for secondary particles with production angles 20°<θ<125°. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.  相似文献   
90.
The reactions of carbon dioxide, CO2, with the precursor ions used for selected ion flow tube mass spectrometry, SIFT‐MS, analyses, viz. H3O+, NO+ and O, are so slow that the presence of CO2 in exhaled breath has, until recently, not had to be accounted for in SIFT‐MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H3O+CO2, formed by the slow association reaction of the precursor ion H3O+ with CO2 molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT‐MS instruments now allows accurate quantification of CO2 in breath using the level of the H3O+CO2 adduct ion. However, this is complicated by the rapid reaction of H3O+CO2 with water vapour molecules, H2O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three‐body association reaction of H3O+ with CO2 and its rapid loss in the two‐body reaction with H2O molecules. It is seen that the signal level of the H3O+CO2 adduct ion is sensitively dependent on the humidity (H2O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT‐MS software and kinetics library that allows accurate measurement of CO2 levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO2 can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts‐per‐billion. This has added a further dimension to the analysis of major and trace compounds in breath using SIFT‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号