首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   14篇
  国内免费   1篇
化学   262篇
力学   3篇
数学   32篇
物理学   53篇
  2022年   9篇
  2021年   6篇
  2020年   4篇
  2019年   12篇
  2018年   11篇
  2017年   4篇
  2016年   9篇
  2015年   14篇
  2014年   18篇
  2013年   20篇
  2012年   22篇
  2011年   25篇
  2010年   26篇
  2009年   16篇
  2008年   28篇
  2007年   37篇
  2006年   27篇
  2005年   27篇
  2004年   10篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
排序方式: 共有350条查询结果,搜索用时 23 毫秒
141.
Photochemistry of HI molecules on large Ar(n) and (H(2)O)(n), n ~ 100-500, clusters was investigated after excitation with 243 nm and 193 nm laser radiation. The measured H-fragment kinetic energy distributions pointed to a completely different photodissociation mechanism of HI on water than on argon clusters. Distinct features corresponding to the fragment caging (slow fragments) and direct exit (fast fragments) were observed in the spectra from HI photodissociation on Ar(n) clusters. On the other hand, the fast fragments were entirely missing in the spectrum from HI·(H(2)O)(n) and the slow-fragment part of the spectrum had a different shape from HI·Ar(n). The HI·(H(2)O)(n) spectrum was interpreted in terms of the acidic dissociation of HI on (H(2)O)(n) in the ground state, and hydronium radical H(3)O formation following the UV excitation of the ionically dissociated species into states of a charge-transfer-to-solvent character. The H(3)O generation was proved by experiments with deuterated species DI and D(2)O. The experiment was complemented by ab initio calculations of structures and absorption spectra for small HI·(H(2)O)(n) clusters, n = 0-5, supporting the proposed model.  相似文献   
142.
We developed a technique to decrease memory requirements when solving the integral equations of three‐dimensional (3D) molecular theory of solvation, a.k.a. 3D reference interaction site model (3D‐RISM), using the modified direct inversion in the iterative subspace (MDIIS) numerical method of generalized minimal residual type. The latter provides robust convergence, in particular, for charged systems and electrolyte solutions with strong associative effects for which damped iterations do not converge. The MDIIS solver (typically, with 2 × 10 iterative vectors of argument and residual for fast convergence) treats the solute excluded volume (core), while handling the solvation shells in the 3D box with two vectors coupled with MDIIS iteratively and incorporating the electrostatic asymptotics outside the box analytically. For solvated systems from small to large macromolecules and solid–liquid interfaces, this results in 6‐ to 16‐fold memory reduction and corresponding CPU load decrease in MDIIS. We illustrated the new technique on solvated systems of chemical and biomolecular relevance with different dimensionality, both in ambient water and aqueous electrolyte solution, by solving the 3D‐RISM equations with the Kovalenko–Hirata (KH) closure, and the hypernetted chain (HNC) closure where convergent. This core–shell‐asymptotics technique coupling MDIIS for the excluded volume core with iteration of the solvation shells converges as efficiently as MDIIS for the whole 3D box and yields the solvation structure and thermodynamics without loss of accuracy. Although being of benefit for solutes of any size, this memory reduction becomes critical in 3D‐RISM calculations for large solvated systems, such as macromolecules in solution with ions, ligands, and other cofactors. © 2012 Wiley Periodicals, Inc.  相似文献   
143.
Groundwater can be contaminated when e.g. gasoline tanks leak. Due to sampling and lab analysis, groundwater monitoring is time consuming and expensive. The technologies developed for rapid on-site analysis of gasoline contaminated groundwater face the technical limitation to distinguish the gasoline from complex matrices. In the present study the fingerprint identification of volatile organic components (VOCs) in gasoline contaminated groundwater using gas chromatography (GC) differential ion mobility spectrometry (DMS) is investigated. Groundwater was spiked with five sorts of gasoline (one reformulated gasoline, gasoline without additives and three different brand gasoline collected on petrol stations) and analyzed by GC-DMS. Seven VOCs (benzene, toluene, ethyl benzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene) were identified by GC mass spectrometry (GC-MS) as well as by GC-DMS and selected as markers. The semi-quantitative determination of the selected compounds was achieved. The limits of detection of the GC-DMS are 46.42?ng for benzene, 1.13?ng for toluene, 1.80?ng for ethylbenzene, 0.22?ng for m-xylene, 1.13?ng for p-xylene, 0.61?ng for o-xylene and 0.37?ng for 1,2,4-trimethylbenzene, respectively. These results reveal the feasibility of GC-DMS for on-site monitoring of contaminated groundwater.  相似文献   
144.
We develop some new techniques of constructing (finite state) actions on rooted homogeneous trees and apply them to various groups. In particular we show that there is a faithful action of each amalgameted free product of the form ???? on a rooted homogeneous tree of finite degree, described by finite state automorphisms.  相似文献   
145.

Introduction

The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community.

Methods

We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN.

Results

There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network.

Conclusions

As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers.  相似文献   
146.
147.
Phase relations in the ternary system Ce–Pd–Si have been established for the isothermal section at 800 °C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 °C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of τ8—Ce3Pd4Si4 (U3Ni4Si4-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), τ16—Ce2Pd14Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for τ18—CePd1−xSix (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of τ5—Ce3PdSi3 (Ba3Al2Ge2-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and τ13—Ce3−xPd20+xSi6 (0≤x≤1, Co20Al3B6-type, Fmm; a=1.21527(2) nm). The ternary compound Ce2Pd3Si3 (structure-type Ce2Rh1.35Ge4.65, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 °C. Phase equilibria in Ce–Pd–Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium–palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for τ2—Ce(PdxSi1−x)2 (AlB2-derivative type), τ6—Ce(PdxSi1−x)2 (ThSi2-type) and τ7—CePd2−xSi2+x. The crystal structures of compounds τ4—Ce~8Pd~46Si~46, τ12—Ce~29Pd~49Si~22, τ15—Ce~22Pd~67Si~11, τ17—Ce~5Pd~77Si~18 and τ18—CePd1−xSix (x~0.1) are still unknown.  相似文献   
148.
The crystal structures of ternary compounds RPt3−xSi1−y(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt3−xSi1−y arises from defects: x≈0.20, y≈0.14. The crystal structure of RPt3−xSi1−y can be considered as a packing of four types of building blocks which derive from the CePt3B-type unit cell by various degrees of distortion and Pt, Si-defects.  相似文献   
149.
We initiate the study of semitransitive transformation semigroups. In the paper we describe the structure of semitransitive subsemigroups of the finite symmetric inverse semigroup of the minimal cardinality modulo the classification of transitive subgroups of the minimal cardinality of finite symmetric groups, and state the results on minimal transitive subsemigroups. The authors were supported in part by Ukrainian-Slovenian bilateral research grants from the Ministry of Education and Science, Ukraine, and the Research Agency of the Republic of Slovenia.  相似文献   
150.
The thermodynamic and dielectric properties of the simple point charge extended (SPC/E) water model are examined over wide temperature and density range by means of molecular dynamic simulations. Accurate analytical thermodynamic and dielectric equations of state for the SPC/E pair-potential are presented. Parameterizations cover a broad range of high temperature states including the critical region. The critical point parameters of SPC/E water were determined to be ρc = 0.276 g/cm3, Tc = 640.25 K and pc = 164.37 bar. The value of the static dielectric constant of SPC/E water at its critical point was calculated to be 5.35, which compares remarkably well with the corresponding experimental value of 5.36. Analytical thermodynamic and dielectric equations for the saturated liquid and vapor densities are also given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号