首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   13篇
数学   4篇
物理学   12篇
  2021年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
排序方式: 共有29条查询结果,搜索用时 375 毫秒
11.
This paper gives one-term componentwise asymptotics for theM and spectral matrices of a self-adjoint realisation of aneven-order ordinary differential expression. The underlyinginterval is assumed to have at least one regular endpoint, andthe boundary conditions are supposed to be separated. Furthermore,the weight function and the reciprocal of the highest-ordercoefficient are supposed to be of regular variation at the regularendpoint, in the sense of Bingham, Goldie and Teugels. 1991Mathematics Subject Classification: 34B24, 34E05.  相似文献   
12.
The estrogen receptor-beta subtype (ERbeta) is an attractive drug target for the development of novel therapeutic agents for hormone replacement therapy. Hologram quantitative structure-activity relationships (HQSAR) were conducted on a series of 6-phenylnaphthalene and 2-phenylquinoline derivatives, employing values of ERbeta binding affinity. A training set of 65 compounds served to derive the models. The best statistical HQSAR model (q(2) = 0.73 and r(2) = 0.91) was generated using atoms, bonds, connections and donor and acceptor as fragment distinction parameters, and fragment size default (4-7) with hologram length of 199. The model was used to predict the binding affinity of an external test set of 16 compounds, and the predicted values were in good agreement with the experimental results. The final HQSAR model and the information obtained from 2D contribution maps should be useful for the design of novel ERbeta modulators having improved affinity.  相似文献   
13.
Chagas’s is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. According to the World Health Organization, 7 million people are infected worldwide leading to 7000 deaths per year. Drugs available, nifurtimox and benzimidazole, are limited due to low efficacy and high toxicity. As a validated target, cruzain represents a major front in drug discovery attempts for Chagas disease. Herein, we describe the development of 2D QSAR (\(r_{{{\text{pred}}}}^{2}\)?=?0.81) and a 3D-QSAR-based pharmacophore (\(r_{{{\text{pred}}}}^{2}\)?=?0.82) from a series of non-covalent cruzain inhibitors represented mostly by oxadiazoles (lead compound, IC50?=?200 nM). Both models allowed us to map key intermolecular interactions in S1′, S2 and S3 cruzain sub-sites (including halogen bond and C?H/π). To probe the predictive capacity of obtained models, inhibitors available in the literature from different classes displaying a range of scaffolds were evaluate achieving mean absolute deviation of 0.33 and 0.51 for 2D and 3D models, respectively. CoMFA revealed an unexplored region where addition of bulky substituents to produce new compounds in the series could be beneficial to improve biological activity.  相似文献   
14.
The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.  相似文献   
15.
Proton nuclear magnetic resonance ((1)H NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T(2) filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T(2) filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T(2) or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.  相似文献   
16.

Background  

The main olfactory epithelium (MOE) in the nasal cavity detects a variety of air borne molecules that provide information regarding the presence of food, predators and other relevant social and environmental factors. Within the epithelium are ciliated sensory neurons, supporting cells, basal cells and microvillous cells, each of which is distinct in morphology and function. Arguably, the least understood, are the microvillous cells, a population of cells that are small in number and whose function is not known. We previously found that in a mouse strain in which the TRPM5 promoter drives expression of the green fluorescent protein (GFP), a population of ciliated olfactory sensory neurons (OSNs), as well as a population of cells displaying microvilli-like structures is labeled. Here we examined the morphology and immunocytochemical properties of these microvillous-like cells using immunocytochemical methods.  相似文献   
17.

Background  

This study compared the transduction efficiencies of an adeno-associated viral (AAV) vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP), with a lentiviral (LV) vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed), to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed.  相似文献   
18.
Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug–receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.  相似文献   
19.
The objective of this study was to determine if topical anesthesia to the larynx and pharynx affects vocal fold motion during dynamic voice evaluation with transnasal flexible endoscopy. Transnasal dynamic laryngeal examinations of 10 patients with no voice complaints were evaluated by five blinded fellowship-trained laryngologists. Each patient was examined before and after application of topical anesthetic. Reviewers rated briskness of right and left vocal fold movement and longitudinal tension on a visual analogue scale. Statistical comparisons were made between individual subject scores before and after anesthetic application. Inter-rater reliability was also assessed. No statistical difference was observed between subject scores before and after anesthetic application. Average intraclass correlation coefficients were 0.643 and 0.591 for pre- and postanesthesia scores, respectively. Application of topical anesthesia to the larynx and pharynx does not affect vocal fold motion.  相似文献   
20.
Immobilized enzyme reactors (IMERs) for on-line enzymatic studies are useful tool to select specific inhibitors and may be used for direct determination of drug-receptor binding interactions and for the rapid on-line screening to identify specific inhibitors. This technique has been shown to increase the stability of enzymes. The enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi and it has become a key target in the drug discovery program for Chagas' disease. Crystallographic studies have indicated that there are significant inter-species differences in GAPDH activity and sensitivity. For example the active sites of GAPDH in T. cruzi and humans differ by a substitution of ASP(210) (T. cruzi) by Leu(194) in human. Based on this information we initiated the study to develop optimal conditions for the covalent immobilization of the human GAPDH enzyme on a modified capillary support (400 mm x 0.10 mm). The chromatographic separation of NAD from NADH was achieved using a RP-Spherex-diol-OH (10 cm x 0.46 cm, 10 microm, 100 A) column. By using multidimensional HPLC chromatography system it was possible to investigate the activity and kinetic parameters of the GAPDH-IMER. The values obtained for D-GA3P and NAD were K(m)=3.5+/-0.2 mM and 0.75+/-0.04 mM, respectively, and were compared with values obtained with the free enzyme. The activity of the immobilized GAPDH has been preserved for over 120 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号