首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10488篇
  免费   374篇
  国内免费   62篇
化学   7909篇
晶体学   83篇
力学   226篇
数学   1297篇
物理学   1409篇
  2023年   78篇
  2022年   97篇
  2021年   143篇
  2020年   227篇
  2019年   167篇
  2018年   129篇
  2017年   115篇
  2016年   268篇
  2015年   251篇
  2014年   284篇
  2013年   509篇
  2012年   742篇
  2011年   915篇
  2010年   434篇
  2009年   285篇
  2008年   669篇
  2007年   727篇
  2006年   769篇
  2005年   749篇
  2004年   591篇
  2003年   502篇
  2002年   434篇
  2001年   111篇
  2000年   105篇
  1999年   100篇
  1998年   91篇
  1997年   99篇
  1996年   120篇
  1995年   84篇
  1994年   88篇
  1993年   74篇
  1992年   65篇
  1991年   63篇
  1990年   50篇
  1989年   34篇
  1988年   46篇
  1987年   36篇
  1986年   22篇
  1985年   83篇
  1984年   49篇
  1983年   33篇
  1982年   58篇
  1981年   57篇
  1980年   47篇
  1979年   46篇
  1978年   42篇
  1977年   38篇
  1976年   30篇
  1975年   35篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials.  相似文献   
942.
The reaction of o-C6H4(AsMe2)2 with VCl4 in anhydrous CCl4 produces orange eight-coordinate [VCl4{o-C6H4(AsMe2)2}2], whilst in CH2Cl2 the product is the brown, six-coordinate [VCl4{o-C6H4(AsMe2)2}]. In dilute CH2Cl2 solution slow decomposition occurs to form the VIII complex [V2Cl6{o-C6H4(AsMe2)2}2]. Six-coordination is also found in [VCl4{MeC(CH2AsMe2)3}] and [VCl4{Et3As)2]. Hydrolysis of these complexes occurs readily to form vanadyl (VO2+) species, pure samples of which are obtained by reaction of [VOCl2(thf)2(H2O)] with the arsines to form green [VOCl2{o-C6H4(AsMe2)2}], [VOCl2{MeC(CH2AsMe2)3}(H2O)] and [VOCl2(Et3As)2]. Green [VOCl2(o-C6H4(PMe2)2}] is formed from [VOCl2(thf)2(H2O)] and the ligand. The [VOCl2{o-C6H4(PMe2)2}] decomposes in thf solution open to air to form the diphosphine dioxide complex [VO{o-C6H4(P(O)Me2)2}2(H2O)]Cl2, but in contrast, the products formed from similar treatment of [VCl4{o-C6H4(AsMe2)2}x] or [VOCl2{o-C6H4(AsMe2)2}] contain the novel arsenic(V) cation [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]+. X-ray crystal structures are reported for [V2Cl6{o-C6H4(AsMe2)2}2], [VO(H2O){o-C6H4(P(O)Me2)2}2]Cl2, [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]Cl·[VO(H2O)3Cl2] and powder neutron diffraction data for [VCl4{o-C6H4(AsMe2)2}2].  相似文献   
943.

Abstract  

The crystal structures of the new compounds 5-bromo-N-[2-(methylthio)-phenyl]salicylaldimine (1), and 3,5-dichloro-N-[2-(methylthio)phenyl]salicylaldimine (2) were obtained by single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 14.1479(14) ?, b = 5.3058(3) ?, c = 19.104(3) ?; β = 106.218(10)°; and Z = 4. Compound 2 crystallizes in the triclinic space group $ Pbar{1} $ Pbar{1} with a = 11.2249(10) ?, b = 13.863(2) ?, c = 13.9055(9) ?; and α = 99.378(15)°, β = 102.866(7)°, γ = 91.375(11)°; and Z = 6. Details of the synthesis, structures, and spectroscopic properties of the new compounds are discussed.  相似文献   
944.
Proton affinities are calculated at all reactive positions for the normal benzenoid hydrocarbons, benzene, naphthalene, phenanthrene and anthracene, a strained benzenoid hydrocarbon, biphenylene, and a nonalternant hydrocarbon, fluoranthene, and the results are compared to experimental protodetritiation rates. Methods used include PM3 and Hartree-Fock calculations at the STO-3G, 3-21G*, 6-31G* and MP2//6-31G* levels. Generally good agreement is found between theory and experiment with 6-31G* giving the best correlations. Received: 11 June 1998 / Accepted: 3 September 1998 / Published online: 23 February 1999  相似文献   
945.
The sensitivity of high-resolution 17O (I = 5/2) NMR spectroscopy of solids has advanced significantly in recent years. Here, we show that excellent results are now obtainable from milligram quantities of 17O-enriched materials, thereby allowing the technique to be applied to silicate phases synthesized under very high pressures in a multiple-anvil apparatus. We report the first 17O NMR study of beta-Mg2SiO4 (9.6 mg of 35% 17O-enriched material, synthesized at p = 16 GPa and T = 1873 K), a dense phase believed to have a significant role in the Earth's mantle. Using STMAS at magnetic fields of B0 = 9.4 and 11.7 T and MQMAS at B0 = 18.8 T, we have resolved and assigned all four crystallographically distinct O sites and determined their chemical shift and quadrupolar parameters.  相似文献   
946.
Prolonged listening to a pulse train with repetition rates around 100 Hz induces a striking aftereffect, whereby subsequently presented sounds are heard with an unusually "metallic" timbre [Rosenblith et al., Science 106, 333-335 (1947)]. The mechanisms responsible for this auditory aftereffect are currently unknown. Whether the aftereffect is related to an alteration of the perception of temporal envelope fluctuations was evaluated. Detection thresholds for sinusoidal amplitude modulation (AM) imposed onto noise-burst carriers were measured for different AM frequencies (50-500 Hz), following the continuous presentation of a periodic pulse train, a temporally jittered pulse train, or an unmodulated noise. AM detection thresholds for AM frequencies of 100 Hz and above were significantly elevated compared to thresholds in quiet, following the presentation of the pulse-train inducers, and both induced a subjective auditory aftereffect. Unmodulated noise, which produced no audible aftereffect, left AM detection thresholds unchanged. Additional experiments revealed that, like the Rosenblith et al. aftereffect, the effect on AM thresholds does not transfer across ears, is not eliminated by protracted training, and can last several tens of seconds. The results suggest that the Rosenblith et al. aftereffect is related to a temporary alteration in the perception of fast temporal envelope fluctuations in sounds.  相似文献   
947.
We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.  相似文献   
948.
Two protocols for the transamidation of primary amides with primary and secondary amines, forming secondary and tertiary amides, respectively, are described. Both processes employ N,N-dialkylformamide dimethyl acetals for primary amide activation, producing N'-acyl-N,N-dialkylformamidines as intermediates, as widely documented in the literature. Although the latter intermediates react irreversibly with amines by amidinyl transfer, we show that in the presence of certain Lewis acid additives efficient acyl transfer occurs, providing new and useful methods for amide exchange. In one protocol for transamidation, the N'-acyl-N,N-dialkylformamidine intermediates are purified by flash-column chromatography and the purified intermediates are then treated with an amine (typically, 2.5 equiv) in the presence of scandium triflate (10 mol %) in ether to form in high yields the products of transamidation. In a second procedure, N'-acyl-N,N-dialkylformamidines are generated in situ and, without isolation, are subjected to transamidation in the presence of zirconium chloride (0.5 equiv) and an amine (typically 2 equiv). A variety of different primary amides and amines are found to undergo efficient transamidation using the methods described.  相似文献   
949.
The clustering of nanoparticles (NPs) in solutions and polymer melts depends sensitively on the strength and directionality of the NP interactions involved, as well as the molecular geometry and interactions of the dispersing fluids. Since clustering can strongly influence the properties of polymer-NP materials, we aim to better elucidate the mechanism of reversible self-assembly of highly symmetric NPs into clusters under equilibrium conditions. Our results are based on molecular dynamics simulations of icosahedral NP with a long-ranged interaction intended to mimic the polymer-mediated interactions of a polymer-melt matrix. To distinguish effects of polymer-mediated interactions from bare NP interactions, we compare the NP assembly in our coarse-grained model to the case where the NP interactions are purely short ranged. For the "control" case of NPs with short-ranged interactions and no polymer matrix, we find that the particles exhibit ordinary phase separation. By incorporating physically plausible long-ranged interactions, we suppress phase separation and qualitatively reproduce the thermally reversible cluster formation found previously in computations for NPs with short-ranged interactions in an explicit polymer-melt matrix. We further characterize the assembly process by evaluating the cluster properties and the location of the self-assembly transition. Our findings are consistent with a theoretical model for equilibrium clustering when the particle association is subject to a constraint. In particular, the density dependence of the average cluster mass exhibits a linear concentration dependence, in contrast to the square root dependence found in freely associating systems. The coarse-grained model we use to simulate NP in a polymer matrix shares many features of potentials used to model colloidal systems. The model should be practically valuable for exploring factors that control the dispersion of NP in polymer matrices where explicit simulation of the polymer matrix is too time consuming.  相似文献   
950.
Here we present a model for a small system combined with an explicit entropy bath that iscomparably small. The dynamics of the model is defined by a simple matrix, M. Each row ofM corresponds to a macrostate of the system, e.g. net alignment, while the elements in therow represent microstates. The constant number of elements in each row ensures constantentropy, which allows reversible fluctuations, similar to information theory where aconstant number of bits allows reversible computations. Many elements in M come from themicrostates of the system, but many others come from the bath. Bypassing the bath statesyields fluctuations that exhibit standard white noise; whereas with bath states the powerspectral density varies as S(f) ∝ 1 /f overa wide range of frequencies, f. Thus, the explicit entropy bath is the mechanismof 1/f noisein this model. Both forms of the model match Crooks’ fluctuation theorem exactly,indicating that the theorem applies not only to infinite reservoirs, but also tofinite-sized baths. The model is used to analyze measurements of 1/f-like noise from asub-micron tunnel junction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号