全文获取类型
收费全文 | 11248篇 |
免费 | 132篇 |
国内免费 | 49篇 |
专业分类
化学 | 8044篇 |
晶体学 | 146篇 |
力学 | 231篇 |
数学 | 1365篇 |
物理学 | 1643篇 |
出版年
2023年 | 82篇 |
2022年 | 98篇 |
2021年 | 143篇 |
2020年 | 253篇 |
2019年 | 223篇 |
2018年 | 138篇 |
2017年 | 125篇 |
2016年 | 300篇 |
2015年 | 272篇 |
2014年 | 306篇 |
2013年 | 532篇 |
2012年 | 755篇 |
2011年 | 936篇 |
2010年 | 441篇 |
2009年 | 303篇 |
2008年 | 688篇 |
2007年 | 738篇 |
2006年 | 776篇 |
2005年 | 761篇 |
2004年 | 602篇 |
2003年 | 512篇 |
2002年 | 443篇 |
2001年 | 124篇 |
2000年 | 110篇 |
1999年 | 103篇 |
1998年 | 100篇 |
1997年 | 101篇 |
1996年 | 122篇 |
1995年 | 89篇 |
1994年 | 93篇 |
1993年 | 77篇 |
1992年 | 66篇 |
1991年 | 63篇 |
1990年 | 53篇 |
1989年 | 45篇 |
1988年 | 52篇 |
1987年 | 37篇 |
1985年 | 84篇 |
1984年 | 52篇 |
1983年 | 40篇 |
1982年 | 68篇 |
1981年 | 70篇 |
1980年 | 57篇 |
1979年 | 47篇 |
1978年 | 47篇 |
1977年 | 45篇 |
1976年 | 37篇 |
1975年 | 42篇 |
1974年 | 28篇 |
1973年 | 24篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Gusev AI Wilkinson WR Proctor A Hercules DM 《Analytical and bioanalytical chemistry》1996,354(4):455-463
The protocol and various matrices were examined for quantification of biomolecules in both the low ca. 1200 amu and mid mass 6000-12000 amu ranges using an internal standard. Comparative studies of different matrices of MALDI quantitative analysis showed that the best accuracy and standard curve linearity were obtained for two matrices: (a) 2,5-dihydroxybenzoic acid (DHB) combined with a comatrix of fucose and 5-methoxysalicylic acid (MSA) and (b) ferulic acid/fucose. In the low mass range, the quantitative limit was in the 30 fmol range and in the mid mass range the quantitative limit was in the 250 fmol range. Linear response was observed over 2-3 decades of analyte concentration. The relative error of the standard curve slope was 1.3-1.8% with correlation coefficients of 0.996-0.998.The main problem for quantitative measurement was suppression of the signal of the less concentrated component (analyte or internal standard) by the more concentrated component. The effect was identified with saturation of the matrix by the analyte. The threshold of matrix saturation was found to be in the range of 1/(3000-5000) analyte/matrix molar ratio. To avoid matrix saturation the (analyte+internal standard) to matrix molar ratio should be below this threshold. Thus the internal standard concentration should be as low as possible.DHB/MSA/fucose and ferulic acid/fucose matrices demonstrated good accuracy and linearity for standard curves even when the internal standard had chemical properties different from the analyte. However, use of an internal standard with different chemical properties requires highly stable instrumental parameters as well as constant (analyte+internal standard)/matrix molar ratio for all samples. 相似文献
112.
Carmona D Lahoz FJ Atencio R Edwards AJ Oro LA Lamata MP Esteban M Trofimenko S 《Inorganic chemistry》1996,35(9):2549-2557
Treatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)). Complex 1 reacts with 5 in the presence of KOH to give the IrNi complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(3)Ni{HB(3-i-Pr-4-Br-pz)(3)}] (13) whereas its reaction with 4 and KOH rendered the bis(&mgr;-pyrazolato) &mgr;-hydroxo complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(2)(&mgr;-OH)Co{HB(3-i-Pr-4-Br-pz)(3)}] (14). The molecular structure of the heterobridged IrCo complex (6) and those of the homobridged RuNi (12) and IrNi (13) complexes have been determined by X-ray analyses. Compound 6 crystallizes in the monoclinic space group P2(1)/n, with a = 10.146(5) ?, b = 18.435(4) ?, c = 22.187(13) ?, beta = 97.28(4) degrees, and Z = 4. Complex 12 is monoclinic, space group P2(1), with a = 10.1169(7) ?, b = 21.692(2) ?, c = 11.419(1) ?, beta = 112.179(7) degrees, and Z = 2. Compound 13 crystallizes in the monoclinic space group Cc, with a = 13.695(2) ?, b = 27.929(6) ?, c = 13.329(2) ?, beta = 94.11(4) degrees, and Z = 4. All the neutral complexes 6, 12, and 13 consist of linear M.M'.B backbones with two (6) or three (12, 13) pyrazolate ligands bridging the dimetallic M.M' units and three substituted 3-i-Pr-4-Br-pz groups joining M' to the boron atoms. The presence in the proximity of the first-row metal M' of the three space-demanding isopropyl substituents of the pyrazolate groups induces a significant trigonal distortion of the octahedral symmetry, yielding clearly different M'-N bond distances on both sides of the ideal octahedral coordination sphere of these metals. 相似文献
113.
General methods for preparing Re(V)O complexes with a novel series of thiol-amide-thiourea (TATU) ligands, a new class of N(2)S(2) chelates, were developed. The TATU ligands, the first multidentate systems designed with a bidentate thiourea moiety, have been used to prepare the first high-valent transition metal complexes with bidentate thiourea coordination. Direct reaction of N-(2-aminoethyl)-2-((triphenylmethyl)thio)acetamide (1) with phenyl, 4-methoxyphenyl, 4-chlorophenyl, and methyl isothiocyanate afforded ready access to the corresponding S-protected TATU ligands in one step. A two-step preparation of the N,N-dimethylthiourea TATU ligand derived from 1 was also developed. Deprotection of thiols in trifluoroacetic acid with triethylsilane followed by a ligand exchange reaction with Re(V)O precursors yielded neutral ReO(TATU) complexes. The structure of [1-phenyl-3-[2-((2-thioacetyl)amino)ethyl]thioureato]oxorhenium(V) (6a) was determined by X-ray diffraction methods. Crystal data for 6a: C(11)H(12)N(3)O(2)ReS(2), fw 468.6, orthorhombic, Pca2(1); a = 22.605(5) ?, b = 13.029(3) ?, c= 9.698(2) ?; V = 2856.3(11) ?(3); Z = 8. The coordination environment of 6a was pseudo-square-pyramidal with a deprotonated thiol S, deprotonated amide N, deprotonated thiourea N, and thiocarbonyl S coordinated in the basal plane and the oxo ligand in the apical position. The thiourea function forms a four-membered chelate ring in the multidentate TATU ligands. The two N-C and the S-C bond distances within the monodeprotonated thiourea moiety were typical of bonds with multiple-bond character. Solution (1)H NMR data for all five complexes were consistent with the solid-state structure of 6a. A broad singlet attributable to the uncoordinated NH group of thiourea was observed for the monosubstituted thiourea complexes but was not present for the N,N-dimethylthiourea derivative. Instead, two singlets of equal intensity were observed for the two methyl groups, indicating that there is restricted rotation around the C-N(CH(3))(2) bond and an extended pi system in the thiourea moiety. The four-membered ring might cause difficulty because the M-S distance would be relatively long in an undistorted ligand. This may be the reason such chelate ligands have not been previously investigated. However, the N-C-S angle narrows to approximately 105 degrees, permitting a Re-S bond with a typical bond length to be formed. We conclude that such a ring represents a versatile new building block to create multidentate ligands. 相似文献
114.
The reaction of nitric oxide with the carboxylate-bridged diiron(II) complex [Fe(2)(Et-HPTB)(O(2)CPh)](BF(4))(2) (1a) afforded the dinitrosyl adduct, [Fe(2)(NO)(2)(Et-HPTB)(O(2)CPh)](BF(4))(2) (1b), where Et-HPTB = N,N,N',N'-tetrakis(N-ethyl-2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane, in 69% yield. Compound 1b further reacts with dioxygen to form the bis(nitrato) complex, [Fe(2)(Et-HPTB)(NO(3))(2)(OH)](BF(4))(2) (1c). The structure of 1b was determined by X-ray crystallography (triclinic, P&onemacr;, a = 13.5765(8) ?, b = 15.4088(10) ?, c = 16.2145(10) ?, alpha = 73.656(1) degrees, beta = 73.546(1) degrees, gamma = 73.499(1) degrees, V = 3043.8(7) ?(3), T = -80 degrees C, Z = 2, and R = 0.085 and R(w) = 0.095 for 5644 independent reflections with I > 3sigma(I)). The two nitrosyl units are equivalent with an average Fe-N-O angle of 167.4 +/- 0.8 degrees. Spectroscopic characterization of solid 1b revealed an NO stretch at 1785 cm(-)(1) in the infrared and M?ssbauer parameters of delta = 0.67 mm s(-)(1) and DeltaE(Q) = 1.44 mm s(-)(1) at 4.2 K. These data are comparable to those for other {FeNO}(7) systems. An S = (3)/(2) spin state was assigned from magnetic susceptibility studies to the two individual {FeNO} centers, each of which has a nitrosyl ligand antiferromagnetically coupled to iron. A least-squares fit of the chi vs temperature plots to a theoretical model yielded an exchange coupling constant J of -23 cm(-)(1), where H = -2JS(1).S(2), indicating that the two S = (3)/(2) centers are antiferromagnetically coupled to one another. An extended Hückel calculation on a model complex, [Fe(2)(NO)(2)(NH(3))(6)(O(2)CH)(OH)](2+), revealed that the magnitudes of Fe-N-O angles are dictated by pi-bonding interactions between the Fe d(xz)() and NO pi orbitals. 相似文献
115.
Abbotto A Bradamante S Capri N Rzepa H Williams DJ White A 《The Journal of organic chemistry》1996,61(5):1770-1778
Enamines and enol ethers substituted in the beta position by the 2-benzoxazolyl and 2-benzothiazolyl group have been obtained by condensing dimethylformamide dimethyl acetal and ethyl orthoformate, respectively, with bis(2-benzoxazolyl)methane and bis(2-benzothiazolyl)methane. A dynamic NMR and semiempirical (PM3) investigation on rotational energy barriers has been carried out in order to rank the electron-withdrawing capacity of the heterocyclic rings. The NMR-based evaluation of the energy barriers corresponding to the rotation along the enaminic double bond has shown that the pi-electron-withdrawing power of benzothiazole is larger than that of benzoxazole, in full accord with previously obtained charge demand values based on (13)C and (15)N pi-charge/shift relationships. The NMR and the computational approaches have led to consistent results. The X-ray crystal structure of alpha,alpha-bis(2-benzothiazolyl)-beta-(dimethylamino)ethene shows that only one heteroaryl ring is coplanar with the enaminic double bond, while the second one is twisted by 73 degrees relative to such a plane. Moreover, in this case calculations closely reproduce the experimental results. In the calculated transition states corresponding to the rotational process along the enamine double bond, the two heteroaryl groups become coplanar and conjugation develops between the enaminic nitrogen electron pool and both heterocycles. The lower rotational barrier observed in the case of the 2-benzothiazolyl derivatives, with respect to the 2-benzoxazolyl derivatives, is therefore a direct consequence of the higher electron-withdrawing power of the former group. Furthermore, a stabilizing intramolecular nonbonded S.S interaction in the rotational transition state of the benzothiazolyl derivatives is evidenced by the calculations. An unprecedented isolation of the NH-enamine tautomer involving the benzoxazolyl and benzothiazolyl ring in alpha,alpha-diheteroacetaldehydes has been performed, confirming these heterocycles as strong electron-withdrawing substituents. 相似文献
116.
Condensation of allylborane reagents 9 and 12 with aldehydes gave anti-3-[(diphenylmethylene)amino]-1-alken-4-ols 10 and 13 with high relative and absolute stereocontrol. Subsequent deprotection gave the corresponding free anti-3-amino-1-alken-4-ols 11 and 14. Alternatively, reaction of imines 13a, 13f, and 13g with trifluoromethanesulfonic anhydride and acidic methanol gave, via rearrangement, double inversion, and hydrolysis, the isomeric anti-4-amino-1-alken-3-ols 22, 38a, and 38b in good yield. The stereochemistry of the rearrangement products has been established by a single crystal X-ray study of compound 37 and by chemical correlation. 相似文献
117.
Arianne Soliven Gary R. Dennis Emily F. Hilder R. Andrew Shalliker Paul G. Stevenson 《Chromatographia》2014,77(9-10):663-671
Analytical scale silica monoliths are commercially limited to three column selectivities (bare silica, C8 and C18). An in situ modification is reported in detail to overcome this barrier and allow for any functionality of choice to be bonded to the silica surface of the monolithic stationary phase support. The modification method was conducted on a commercial bare silica column to bond the C18 moiety to the silica surface through a silylation reaction. The C18 type of stationary phase was chosen, as this is the most commonly bonded functionality for the majority of stationary phases used for high-performance liquid chromatography (HPLC) separations. The C18-modified monolith’s performance was compared to a commercial C18 monolithic and a particle packed column of the same analytical scale column dimensions (100 × 4.6 mm). The modified C18 monolith proved to be of high quality with an efficiency of 73,267 N m?1, fast analysis times (operated at flow rates up to 3 mL min?1 using a conventional 400 bar HPLC system) and improved resolution of a set of polar and non-polar substituted aromatics in comparison to a commercial C18 monolith. 相似文献
118.
Suwannee Junyapoon Andrew B. Ross Keith D. Bartle Bernard Frere Alastair C. Lewis Michael Cooke 《Journal of separation science》1999,22(1):47-51
Programmed temperature vaporization injection (PTV) coupled to gas chromatography and atomic emission detector (AED) has been studied for large volume injection of gaseous samples. As examples of the effectiveness of the technique, the results of the analysis of a series of headspace samples of foods such as garlic and onion, and of landfill gases are presented. The volumes of gaseous samples reconcentrated varied from a few milliliters up to liters depending on analyte dilution, through focusing onto a sorbent trap, then rapid liberation into the GC-AED system by programmed thermal desorption. Despite the high carrier gas flow rates associated with direct PTV-GC, AED performance and sensitivity were unaffected. The detailed elemental information obtained from the PTV-GC-AED analyses was confirmed using a PTV coupled to a gas chromatograph with ion trap detector mass spectrometer as detector (PTV-GC-ITD/MS). 相似文献
119.
Simon J. Coles Michael B. Hursthouse David G. Kelly Andrew J. Toner Neil M. Walker 《Journal of organometallic chemistry》1999,580(2):11367
[TiCl2(salen)] (1) reacts with AlMe3 (1:2) to give the heterometallic Ti(III) and Ti(IV) complexes [Ti{(μ-Cl)(AlMe2)}{(μ-Cl)(AlMe2X)}(salen)] (X=Me or Cl) (2) and [TiMe{(μ-Cl)(AlCl2Me)}(salen)] (3). Addition of diethyl ether to 3 affords [Ti(Me)Cl(salen)] (4). The analogous reaction of [TiBr2(salen)] (5) gives the crystallographically characterised [Ti{(μ-Br)(AlMe2)}{(μ-Br)(AlMe2X)}(salen)] (X=Me or Br) (6) and [Ti(Me)Br(salen)] (7) in a single step, whilst the comparable reaction of [TiCl2{(3-MeO)2salen}] (8) with AlMe3 yields [Ti(Me)Cl{(3-MeO)2salen}] (9) with no evidence of titanium(III) species. Reactivity of both halide and methyl groups of 4 has been probed using magnesium reduction, SbCl5 and AgBF4 halide abstraction and SO2 insertion reactions. Hydrolysis of [Ti(Me)X(L)] complexes affords μ-oxo species [TiX(L)]2(μ-O) [X=Cl, L=salen (13); X=Br, L=salen (14); X=Cl, L=(3-MeO)2salen (15)]. 相似文献
120.
John S Forsythe David J.T Hill Anestis L Logothetis Tadao Seguchi Andrew K Whittaker 《Radiation Physics and Chemistry》1998,53(6):657-667
The effect of irradiation temperature on the polymer properties was investigated for the fluoroelastomer poly(tetrafluoroethylene-co-perfluoromethylvinyl ether) (TFE/PMVE). TFE/PMVE samples were γ-irradiated to 150 kGy at temperatures ranging from 77 K to 373 K. Analysis of the sol/gel behaviour, tensile properties, and glass transition temperatures indicated that crosslinking commenced in the temperature range 195 to 263 K, for a dose of 150 kGy. The latter temperature was 13 K below the glass transition temperature. Crosslinking remained relatively constant to higher temperatures. Chain scission reactions were found to occur well below the glass transition temperature and increased at higher temperatures. The optimum temperature for the radiation crosslinking of TFE/PMVE, for the temperatures investigated, was 263 K. 相似文献