The rotational molecular dynamics of water confined to layered oxide materials with brucite structure was studied by dielectric spectroscopy in the frequency range from 10(-2) to 10(7) Hz and in a broad temperature interval. The layered double hydroxide samples show one relaxation process, which was assigned to fluctuations of water molecules forming a layer, strongly adsorbed to the oxide surface. The temperature dependence of the relaxation rates has an unusual saddlelike shape characterized by a maximum. The model of Ryabov et al. (J. Phys. Chem. B 2001, 105, 1845) recently applied to describe the dynamics of water molecules in porous glasses is employed also for the layered materials. This model assumes two competing effects: rotational fluctuations of water molecules that take place simultaneously with defect formation, allowing the creation of free volume necessary for reorientation. The activation energy of rotational fluctuations, the energy of defect formation, a pre-exponential factor, and the defect concentration are obtained as main parameters from a fit of this model to the data. The values of these parameters were compared with those found for water confined to nanoporous molecular sieves, porous glasses, or bulk ice. Several correlations were discussed in detail, such as the lower the value of the energy of defect formation, the higher the number of defects. The pre-exponential factor increases with increasing activation energy, as an expression of the compensation law, and indicates the cooperative nature of the motional process. The involvement of the surface OH groups and of the oxygen atoms of the interlayer anions in the formation of hydrogen bonds was further discussed. For the birnessite sample, the relaxation processes are probably overlaid by a dominating conductivity contribution, which is analyzed in its frequency and temperature dependence. It is found that the conductivity of birnessite obeys the characteristics of semiconducting disordered materials. Especially the Barton/Nakajima/Namikawa relationship is fulfilled. Analyzing the temperature dependence of the direct current (dc) conductivity sigma0 in detail gives some hint that sigma0(T) has also an unusual saddlelike form. 相似文献
The isotope ratio of each of the light elements preserves individual information on the origin and history of organic natural compounds. Therefore, a multi-element isotope ratio analysis is the most efficient means for the origin and authenticity assignment of food, and also for the solution of various problems in ecology, archaeology and criminology. Due to the extraordinary relative abundances of the elements hydrogen, carbon, nitrogen and sulfur in some biological material and to the need for individual sample preparations for H and S, their isotope ratio determination currently requires at least three independent procedures and approximately 1 h of work. We present here a system for the integrated elemental and isotope ratio analysis of all four elements in one sample within 20 min. The system consists of an elemental analyser coupled to an isotope ratio mass spectrometer with an inlet system for four reference gases (N(2), CO(2), H(2) and SO(2)). The combustion gases are separated by reversible adsorption and determined by a thermoconductivity detector; H(2)O is reduced to H(2). The analyser is able to combust samples with up to 100 mg of organic material, sufficient to analyse samples with even unusual elemental ratios, in one run. A comparison of the isotope ratios of samples of water, fruit juices, cheese and ethanol from wine, analysed by the four-element analyser and by classical methods and systems, respectively, yielded excellent agreements. The sensitivity of the device for the isotope ratio measurement of C and N corresponds to that of other systems. It is less by a factor of four for H and by a factor of two for S, and the error ranges are identical to those of other systems. 相似文献
The photolability of the antitumor antibiotic hedamycin ( 1 ) was investigated by irradiation in different solvents in the presence or in the absence of oxygen. The products formed were separated chromatographically and their structures determined by NMR spectroscopy. Photolysis of 1 in the presence of oxygen gave only one isolable product, photohedamycin A ( 3 ), where ring E of hedamycin had been transformed into an enol ether. The reaction in the absence of oxygen yielded the photohedamycins B, C, and D ( 5, 6 , and 7 , respectively). In these compounds, one of the epoxides of hedamycin had been opened reductively, and in photohedamycin D ( 7 ) the substituent at C(8) - originally ring E of hedamycin - was now acyclic. In addition to these compounds, the photolyses yielded a large number of unstable minor products, which could not be isolated. 相似文献
A novel screening approach based on an oligonucleotide‐addressing enzyme assay enables multiplexed simultaneous profiling of DNA polymerases in nanoliter volumes in terms of their different properties. This approach was used to identify enzymes with altered properties out of a library of protein mutants.
In this study, the interplay of two linked equilibria is examined, one concerning an aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and salt employed to partition plasmid DNA (pDNA), and the other a potential structural transition of pDNA depending on PEG and salt concentration and other system parameters. The boundary conditions for pDNA partitioning are set by PEG and salt concentrations, PEG molecular weight, pH, and temperature. While investigating these parameters, it was found that a small increase/decrease of the respective values led to a drastic and significant change in pDNA behavior. This behavior could be attributed to a coil-globule transition of the pDNA triggered by the respective phase conditions. The combination of this structural change, aggregation effects linked to the transition process, and the electrostatic potential difference found in PEG-salt systems thus offers a sensitive way to separate nucleic acid forms on the basis of their unique property to undergo coil-globule transitions under distinct system properties. 相似文献
We study the periods that develop in the drying of capillary porous media, particularly the constant rate (CRP) and the falling rate (FRP) periods. Drying is simulated with a 3-D pore-network model that accounts for the effect of capillarity and buoyancy at the liquid-gas interface and for diffusion through the porous material and through a boundary layer over the external surface of the material. We focus on the stabilizing or destabilizing effects of gravity on the shape of the drying curve and the relative extent of the various drying periods. The extents of CRP and FRP are directly associated with various transition points of the percolation theory, such as the breakthrough point and the main liquid cluster disconnection point. Our study demonstrates that when an external diffusive layer is present, the constant rate period is longer. 相似文献
Multinuclear dynamic NMR spectroscopy of 5-trifluoromethylsulfonyl-1,3,5-dioxaazinane (4) revealed the existence of two close in energy chair conformers with differently oriented CF3 groups with respect to the ring. Of the two alternative routes for their interconversion, the ring inversion path with intermediate formation of the corresponding 2,5-twist-conformer is preferred, with the energy barrier of 11.2 kcal/mol in excellent agreement with the experimental value (11.7 kcal/mol). The Perlin effect is studied experimentally and calculated theoretically for all CH2 groups and found to be subject to the nature of the adjacent heteroatoms O and N, respectively. 相似文献
An unexpected gold(I)-catalyzed homo-Rautenstrauch rearrangement of 1-cyclopropyl propargylic esters to cyclohexenones is disclosed. This rearrangement represents new evidence for the recently discussed gold-stabilized nonclassical carbocation character of intermediates in gold catalysis. A mechanistic study proved partial chirality transfer from optically active propargyl acetates. 相似文献
The spatial magnetic properties (through space NMR shieldings--TSNMRS) of metal complexes (with ligands such as acetylacetone, 3-hydroxy-pyran(4)one) and "metallobenzenes" have been calculated by the GIAO perturbation method and visualized as Iso-Chemical-Shielding Surfaces (ICSS) of various sizes and directions. The TSNMRS values, thus obtained, can be successfully employed to quantify and visualize partial aromaticity of the metallocyclic ring by comparison with the spatial magnetic properties of the corresponding non-complexed ligands in comparable structural and electronic situations, and benzene, respectively. Because anisotropy/ring current effects in (1)H NMR spectra proved to be the molecular response property of TSNMRS, the results obtained concerning partial "chelatoaromaticity" are experimentally ensured. 相似文献
The new monoterpenoid 5-isobutyl-3-methyl-2-furancarbaldehyde was isolated from Tagetes glandulifera Schrank and its structure confirmed by synthesis. 相似文献