首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
化学   135篇
力学   3篇
数学   21篇
物理学   18篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   11篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   15篇
  2010年   8篇
  2009年   4篇
  2008年   10篇
  2007年   9篇
  2006年   19篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1990年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有177条查询结果,搜索用时 62 毫秒
51.
52.
Toth  Janos  Bodi  Tibor  Szucs  Peter  Civan  Faruk 《Transport in Porous Media》1998,31(3):347-363
Abstract. An accurate analytical interpretation method to determine the Leverett function (fw)and its derivative (fw) from immiscible displacement data in core plugs is presented. Linear equations are developed to describe the displacement processes occurring before and after breakthrough. A quadratic function is introduced to represent the saturation distribution along the cores. The relationships derived in this study can be used for analysis of core tests involving constant injection rates and constant pressure differences. The applicability, practicality, and accuracy of the new analytical method are verified by means of the experimental data obtained in the present study and by those reported in the literature.  相似文献   
53.
The photoionization and dissociative photoionization of Im(iPr)2, 1,3‐diisopropylimidazolin‐2‐ylidene, was investigated by imaging photoelectron photoion coincidence (iPEPICO) with vacuum ultraviolet (VUV) synchrotron radiation. A lone‐pair electron of the carbene carbon atom is removed upon ionization and the molecular geometry changes significantly. Only 0.5 eV above the adiabatic ionization energy, IEad=7.52±0.1 eV, the carbene cation fragments, yielding propene or a methyl radical in parallel dissociation reactions with appearance energies of 8.22 and 8.17 eV, respectively. Both reaction channels appear at almost the same photon energy, suggesting a shared transition state. This is confirmed by calculations, which reveal the rate‐determining step as hydrogen‐atom migration from the isopropyl group to the carbene carbon center forming a resonance‐stabilized imidazolium ion. Above 10.5 eV, analogous sequential dissociation channels open up. The first propene‐loss fragment ion dissociates further and another methyl or propene is abstracted. Again, a resonance‐stabilized imidazolium ion acts as intermediate. The aromaticity of the system is enhanced even in vertical ionization. Indeed, the coincidence technique confirms that a real imidazolium ion is produced by hydrogen transfer over a small barrier. The simple analysis of the breakdown diagram yields all the clues to disentangle the complex dissociative photoionization mechanism of this intermediate‐sized molecule. Photoelectron photoion coincidence is a promising tool to unveil the fragmentation mechanism of larger molecules in mass spectrometry.  相似文献   
54.
Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (mm 50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with mm 50%?>?3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.
Figure
C60 secondary ion FT-ICR MS provides unprecedented mass resolving power and mass accuracy for SIMS imaging of biological tissue sections. Overlaid selected ion images from rat brain (left) and high spatial resolution imaging of organic dye underneath a TEM grid (right).  相似文献   
55.
We address partition problems of Erd?s and Hajnal by showing that for all , if and carries a -dense ideal. If is measurable we show that for where is a very large ordinal less than that is closed under all primitive recursive ordinal operations. Received: 27 June 2001 / Revised version: 5 December 2001 / Published online: 4 February 2003 The first author was partially supported by NSF grant DMS-0101155 and the Equipe d'Analyse Univ. of Paris 6. The second author was partially supported by NSF grants DMS-0072560 and DMS-9704477.  相似文献   
56.
57.
DNA photolyase is a photoactive flavoprotein that contains three tryptophan residues between the FAD cofactor and the protein surface, the solvent-exposed Trp being located 14.8 A from the flavin. Photoreduction of the neutral radical FADH. form to the catalytically active FADH- form occurs via electron transfer through this chain. The first step in this chain takes 30 ps, the second less than 4 ps. Using a combination of site-directed mutagenesis and femtosecond polarization spectroscopy to discriminate the spectroscopically indistinguishable Trp residues, we show that the third step occurs in less than 30 ps. This implies that the first photoreduction step is rate limiting and that the Trp chain effectively acts as molecular "wire" ensuring rapid and directed long-range charge translocation across the protein. This finding is important for the functioning of the large class of cryptochrome blue-light receptors, where the Trp chain is conserved. In DNA photolyase we make use of the natural photoactivation of the process, but more generally chains of aromatic amino acids may allow very fast long-range electron transfer also in nonphotoactive proteins.  相似文献   
58.
The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation. For the direct excitation of ANS at 375 nm the binding constant was 4.7 microM(-1) and for UV excitation at 295 nm was 3.2 microM(-1). In the later case, not only ANS but also tryptophan (Trp) residues of LCAT is being excited. Fluorescence spectra and intensity decays show an efficient energy transfer from tryptophan residues to ANS. The apparent distance from Trp donor to ANS acceptor, estimated from the changes in donor lifetime was about 3 nm and depends on the ANS concentration. Steady-state and time-resolved fluorescence emission and anisotropies have been characterized. The lifetime of ANS bound to LCAT was above 16 ns which is characteristic for it being in a hydrophobic environment. The ANS labeled LCAT fluorescence anisotropy decay revealed the correlation time of 42 ns with a weak residual motion of 2.8 ns. These characteristics of ANS labeled LCAT fluorescence show that ANS is an excellent probe to study conformational changes of LCAT protein and its interactions with other macromolecules.  相似文献   
59.
Proton transfer is critical in many important biochemical reactions. The unique three‐step excited‐state proton transfer in avGFP allows observations of protein proton transport in real‐time. In this work we exploit femtosecond to microsecond transient IR spectroscopy to record, in D2O, the complete proton transfer photocycle of avGFP, and two mutants (T203V and S205V) which modify the structure of the proton wire. Striking differences and similarities are observed among the three mutants yielding novel information on proton transfer mechanism, rates, isotope effects, H‐bond strength and proton wire stability. These data provide a detailed picture of the dynamics of long‐range proton transfer in a protein against which calculations may be compared.  相似文献   
60.
The oxidation of iodide to diiodide, I(2)˙(-), by the metal-to-ligand charge-transfer (MLCT) excited state of [Ru(deeb)(3)](2+), where deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, was quantified in acetonitrile and dichloromethane solution at room temperature. The redox and excited state properties of [Ru(deeb)(3)](2+) were similar in the two solvents; however, the mechanisms for excited state quenching by iodide were found to differ significantly. In acetonitrile, reaction of [Ru(deeb)(3)](2+*) and iodide was dynamic (lifetime quenching) with kinetics that followed the Stern-Volmer model (K(D) = 1.0 ± 0.01 × 10(5) M(-1), k(q) = 4.8 × 10(10) M(-1) s(-1)). Excited state reactivity was observed to be the result of reductive quenching that yielded the reduced ruthenium compound, [Ru(deeb(-))(deeb)(2)](+), and the iodine atom, I˙. In dichloromethane, excited state quenching was primarily static (photoluminescence amplitude quenching) and [Ru(deeb(-))(deeb)(2)](+) formed within 10 ns, consistent with the formation of ion pairs in the ground state that react rapidly upon visible light absorption. In both solvents the appearance of I(2)˙(-) could be time resolved. In acetonitrile, the rate constant for I(2)˙(-) growth, 2.2 ± 0.2 × 10(10) M(-1) s(-1), was found to be about a factor of two slower than the formation of [Ru(deeb(-))(deeb)(2)](+), indicating it was a secondary photoproduct. The delayed appearance of I(2)˙(-) was attributed to the reaction of iodine atoms with iodide. In dichloromethane, the growth of I(2)˙(-), 1.3 ± 0.4 × 10(10) M(-1) s(-1), was similar to that in acetonitrile, yet resulted from iodine atoms formed within the laser pulse. These results are discussed within the context of solar energy conversion by dye-sensitized solar cells and storage via chemical bond formation.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6 [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号