首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
化学   37篇
数学   3篇
物理学   7篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
The spatial distribution of different linkers within mixed‐linker metal–organic frameworks crucially influences the properties of such materials. A simple and robust approach based on 1H spin‐diffusion magic‐angle‐spinning nuclear magnetic resonance measurements and modeling of spin‐diffusion curves is presented; this approach facilitates the distinction between homogeneous and clustered distributions. The performance of the approach is demonstrated with an example of an aluminum‐based metal–organic material DUT‐5, which has framework consisting of biphenyl and bipyridyl dicarboxylic linkers. The distribution is shown to be homogeneous in this material. The approach could be applied to studying other spatially disordered crystalline materials.  相似文献   
32.
We check the use of dimensional regularization for UV and IR divergences. We calculate Lee-Nauenberg cross sections in a gauge theory with scalars in which IR regularization can alternatively be done by masses generated by the Higgs-Kibble mechanism. The final results agree.  相似文献   
33.
We make two points about the planar gauge in non-abelian gauge theories: (a) Although ghosts are absent from S-matrix elements they ar necessary to formulate Slavnov identities. (b) The Slavnov identities by themselves are insufficient to control the field renormalization-a supplementary argument is necessary.  相似文献   
34.
A rapid, sensitive, and simple HPLC–MS–MS method, with electro-spray ionization and cetirizine as internal standard (IS), has been developed and validated for simultaneous quantification of fexofenadine and pseudoephedrine in human plasma. The analytes were isolated from plasma by solid-phase extraction (SPE) on Oasis HLB cartridges. The compounds were chromatographed on an RP 18 column with a mixture of ammonium acetate (10 mm, pH 6.4) and methanol as mobile phase. Quantification of the analytes was based on multiple reaction monitoring (MRM) of precursor-to-product ion pairs m/z 502 → 466 for fexofenadine, m/z 166 → 148 for pseudoephedrine, and m/z 389 → 201 for cetirizine. The linear calibration range for both analytes was 2–1,700 ng mL−1 (r = 0.995), based on analysis of 0.1 mL plasma. Extraction recovery was 91.5 and 80.88% for fexofenadine and pseudoephedrine, respectively. The method was suitable for analysis of human plasma samples obtained 72 h after administration of a drug containing both fexofenadine and pseudoephedrine.  相似文献   
35.
Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) crystallizes in the P61 chiral space group as a hydrate, building up permeable chiral crystalline helical water channels. The crystallization-driven chiral self-resolution process is highly robust, with the same air-stable crystalline form readily obtained under a variety of conditions. Interestingly, the HNDPA supramolecular helix inner pore is filled by a helical water wire. The whole edifice is mainly stabilized by robust hydrogen bonds involving the HNDPA amide bonds and CHπ interactions between the HNDPA phenyl groups. The crystalline structure shows breathing behavior, with completely reversible release and re-uptake of water inside the chiral channel under ambient conditions. Importantly, the HNDPA channel is able to transport water very efficiently and selectively under biomimetic conditions. With a permeability per channel of 3.3 million water molecules per second in large unilamellar vesicles (LUV) and total selectivity against NaCl, the HNDPA channel is a very promising functional nanomaterial for future applications.  相似文献   
36.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   
37.
X-ray photoelectron spectroscopy (XPS) was employed to quantify adsorption of polyelectrolytes from aqueous solutions of low ionic strength onto mica, glass, and silica. Silica surfaces were conditioned in base or in acid media as last pre-treatment step (silica-base last or silica-acid last, respectively). Consistency in the determined adsorbed amount, Γ, was obtained independent of the choice of XPS mode and with the two quantification approaches used in the data evaluation. Under the same adsorption conditions, the adsorbed amount, Γ, varied as Γmica > Γsilica-base last ≈ Γglass > Γsilica-acid last. In addition, the adsorbed amount increased with decreasing polyelectrolyte charge density (100% to 1% of segments being charged) for all substrates. Large adsorbed amount was measured for low-charge density polyelectrolytes, but the number of charged segments per square nanometer was low due to steric repulsion between polyelectrolyte chains that limited the adsorption. The adsorbed amount of highly charged polyelectrolytes was controlled by electrostatic interactions and thus limited to that needed to neutralize the substrate surface charge density. For silica, the adsorbed amount depended on the cleaning method, suggesting that this process influenced surface concentration and fraction of different silanol groups. Our results demonstrate that for silica, a higher density and/or more acidic silanol groups are formed using base, rather than acid, treatment in the last step.  相似文献   
38.
Photocatalysis has become common and nanomaterials having photocatalytic functions have been widely characterized. At present, among the many candidates for photocatalysis, TiO2 is almost the only material suitable for industrial use. In this paper, we present a TiO2 synthesis starting from Ti sheets put in contact with a mixture of 0.1 N NaOH and acetone for 72?hours under ambient conditions. The obtained sheets were washed with distilled water and ethanol, and the surface was analyzed for its structural and morphological properties. Thus, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) investigations indicated the formation of TiO2 on the edges of nanometer circles on the surface of the Ti sheets. For characterizing the photocatalytic capacity for wastewater treatment, Ti sheets with TiO2 on the surface contacted with methylene blue solutions at room temperature under ultraviolet light. The degradation of the methylene blue concentration was measured by ultraviolet–visible spectroscopy, demonstrating 99.94% efficiency for wastewater treatment using the obtained material.  相似文献   
39.
To estimate accurately the density of water over a wide range of temperatures with a density maximum at 4?°C is one of the most stringent tests of molecular models. The shape of the curve influences the ability to describe critical properties and to predict the freezing temperature. While it was demonstrated that with a proper parameter fit nonpolarizable models can approximate this behavior accurately, it is much more difficult to do this for polarizable models. We provide a short overview of ρ-T diagrams for existing models, then we give an explanation of this difficulty. We present a version of the BK model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010); and ibid. 135, 234110 (2011)] which is capable to predict the density of water over a wide range of temperature. The BK model uses the charge-on-spring method with three Gaussian charges. Since the experimental dipole moment and the geometry is fixed, and the quadrupole moment is approximated by a least mean square procedure, parameters of the repulsion and dispersive attraction forces remained as free tools to match experimental properties. Relying on a simplified but plausible justification, the new version of the model uses repulsion and attraction as functions of the induced dipole moment of the molecule. The repulsive force increases, while the attractive force decreases with the size of the molecular dipole moment. At the same time dipole moment dependent dispersion forces are taking part in the polarization of the molecule. This scheme iterates well and, in addition to a reasonable density-temperature function, creates dipole distributions with accurate estimation of the dielectric constant of the liquid.  相似文献   
40.
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ–Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as ‘pseudo-Feynman’ integrals. We also explain how energy divergences cancel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号