首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2118篇
  免费   75篇
  国内免费   26篇
化学   1234篇
晶体学   9篇
力学   59篇
数学   388篇
物理学   529篇
  2022年   10篇
  2021年   21篇
  2020年   27篇
  2019年   25篇
  2018年   16篇
  2017年   22篇
  2016年   57篇
  2015年   46篇
  2014年   51篇
  2013年   83篇
  2012年   127篇
  2011年   154篇
  2010年   73篇
  2009年   68篇
  2008年   107篇
  2007年   119篇
  2006年   137篇
  2005年   135篇
  2004年   83篇
  2003年   92篇
  2002年   94篇
  2001年   34篇
  2000年   35篇
  1999年   21篇
  1998年   28篇
  1997年   24篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   26篇
  1992年   27篇
  1991年   22篇
  1990年   21篇
  1989年   19篇
  1988年   17篇
  1987年   15篇
  1986年   19篇
  1985年   24篇
  1984年   22篇
  1983年   25篇
  1982年   20篇
  1981年   25篇
  1980年   16篇
  1979年   14篇
  1978年   21篇
  1977年   16篇
  1976年   13篇
  1975年   13篇
  1974年   11篇
  1973年   14篇
排序方式: 共有2219条查询结果,搜索用时 203 毫秒
151.
We report measurements of propagating capillary waves on a liquid water surface at T=5 degrees C with x-ray photon correlation spectroscopy. The experiment has been performed under grazing incidence conditions with an incoming x-ray beam below the critical angle of total external reflection. In the q region investigated the measured intensity-intensity autocorrelation functions of the liquid water surface were found to be heterodyne signals, i.e., a combination of first- and second-order correlation functions g(1)(tau) and g(2)(tau).  相似文献   
152.
153.
We propose to produce entanglement by measuring the reflection from an optical cavity. Conditioned on the detection of a reflected photon, pairs of atoms in the cavity are prepared in maximally entangled states. The success probability depends on the cavity parameters, but high quality entangled states may be produced with a high probability even for cavities of moderate quality.  相似文献   
154.
Experimental data are presented for the scattering of electrons by CCl4 between 8 and 200 meV impact energy. These results are used in conjunction with data for the reactive process, yielding Cl-, to study the low energy behavior of a system which simultaneously displays both reactive and elastic scattering channels. Phase shifts are derived and illustrate how channel competition develops as the energy falls. This behavior and the involvement of vibronic effects at impact energies above approximately 30 meV pose a challenge to theory.  相似文献   
155.
The use of custom-made solid-phase microextraction (SPME) fibers coated with a perfluorosulfonated ionomer, Nafion, was investigated for nitrogen isotopic analysis of ammonium in aqueous solutions. Aqueous ammonium was converted to ammonia by addition of a base, followed by absorption from the headspace, desorption in the injection port of a gas chromatograph, and analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Fibers coated with a Nafion tubing were chosen due to a higher fiber-gas distribution constant and a higher Nafion thickness than fibers coated with Nafion solution, both leading to a higher amount of ammonia absorbed at equilibrium. The Nafion membrane-coated fiber absorbed approximately 20 times more than a commercial polydimethylsiloxane (PDMS) fiber. The isotopic fractionation between fiber and gas was 1.0117 +/- 0.0009 (standard deviation, SD, of all measurements) at an initial ammonia gas concentration of 21-210 microM. At 390 microM initial gas concentration it was slightly lower. When sampling from liquid samples, an ammonium concentration of 10 mM was needed to obtain a sufficient amount of ammonia absorbed. Modeling of the absorption at different temperatures showed that the absorption was approximately constant in the temperature range suitable for SPME experiments. Absorption at room temperature was therefore used for simplicity. A pilot study was conducted in which absorption was achieved from a single 9 microL droplet of sample. The preliminary results showed that delta(15)N analysis was possible for only 0.4-0.5 micromol of ammonium with a SD of 0.8 per thousand (n = 5).  相似文献   
156.
A high-throughput pKa screening method based on pressure-assisted capillary electrophoresis (CE) and mass spectrometry (MS) is presented. Effects of buffer type and ionic strength on sensitivity and pKa values were investigated. Influence of dimethyl sulfoxide (DMSO) concentration present in the sample on effective mobility measurement was examined. A series of ten volatile buffers, covering a pH range from 2.5 to 10.5 with the same ionic strength, was employed. The application of volatile background electrolytes resulted in significant signal increase as compared with commonly used non-volatile phosphate buffers. In general, the CE/MS system provided a ten-fold higher sensitivity than conventional UV detection. The newly developed CE/MS method offers high-throughput capacity by pooling a number of compounds into a single sample. Simultaneous measurement of more than 50 compounds was readily achieved in less than 150 min. The measured pKa values are consistent with the published data obtained from the CE/UV method and are also in good agreement with data generated by other methods. Other advantages of using CE/MS for pKa screening are illustrated with typical examples, including poorly soluble compounds and non-UV-absorbing compounds.  相似文献   
157.
Summary A variational principle, inspired by optimal control, yields a simple derivation of an error representation, global error=local errorweight, for general approximation of functions of solutions to ordinary differential equations. This error representation is then approximated by a sum of computable error indicators, to obtain a useful global error indicator for adaptive mesh refinements. A uniqueness formulation is provided for desirable error representations of adaptive algorithms. Mathematics Subject Classification (2000):65L70, 65G50This work has been supported by the EU–TMR project HCL # ERBFMRXCT960033, the EU–TMR grant # ERBFMRX-CT98-0234 (Viscosity Solutions and their Applications), the Swedish Science Foundation, UdelaR and UdeM in Uruguay, the Swedish Network for Applied Mathematics, the Parallel and Scientific Computing Institute (PSCI) and the Swedish National Board for Industrial and Technical Development (NUTEK).  相似文献   
158.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
159.
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
160.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号