首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   825篇
  免费   28篇
  国内免费   4篇
化学   481篇
晶体学   4篇
力学   26篇
数学   105篇
物理学   241篇
  2023年   4篇
  2022年   8篇
  2021年   25篇
  2020年   23篇
  2019年   18篇
  2018年   25篇
  2017年   26篇
  2016年   34篇
  2015年   29篇
  2014年   35篇
  2013年   66篇
  2012年   62篇
  2011年   62篇
  2010年   28篇
  2009年   35篇
  2008年   46篇
  2007年   42篇
  2006年   44篇
  2005年   43篇
  2004年   36篇
  2003年   33篇
  2002年   26篇
  2001年   10篇
  2000年   7篇
  1999年   9篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有857条查询结果,搜索用时 296 毫秒
121.
The heat capacity of MnSi at B = 0 and B = 4 T was measured in the temperature range 2.5-100 K. To analyze the data, calculations of the phonon spectrum and phonon density of states in MnSi were performed. The calculated phonon frequencies were confirmed by means of inelastic neutron scattering. The analysis of the data suggests the existence of negative contributions to the heat capacity and entropy of MnSi at T > T(c) that may imply a specific ordering in the spin subsystem in the paramagnetic phase of MnSi.  相似文献   
122.
For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.  相似文献   
123.
124.
Magnetic and structural properties of nanocrystalline LaCoO3 with particle size ranging from 25 to 38 nm, prepared by the citrate method, were investigated. All nanoparticles exhibit ferromagnetism below TC  85 K. It was found that the unit-cell volume increases monotonically with decreasing particle size and ferromagnetic (FM) moment increases simultaneously with lattice expansion, whereas TC remains nearly unchanged. It appears that both magnetic and structural properties of LaCoO3 nanoparticles are size-dependent due to the surface effect. On the other hand, an applied pressure suppresses strongly the FM phase leading to its disappearance at ~11 kbar. Remarkably, the TC does not change visibly under pressure. Our data reveal that the ferromagnetism in LaCoO3 nanoparticles, likely related to the intermediate-spin (IS) Co3+ state, is simply controlled by the unit-cell volume. Within this scenario, the FM coupled IS states appear/disappear with expanding/compressing the lattice and/or Co–O bonds.  相似文献   
125.
The complexation of betulinic and betulonic acids (BIA and BOA) (pentacyclic lupane triterpenoids) with (2‐hydroxypropyl)‐γ‐cyclodextrin (HP‐γ‐CD) was studied at different temperatures using the method combining phase‐solubility technique and CZE. In contrast to mobility shift ACE utilizing the electrophoretic mobility, in this approach, the peak areas are used. The apparent binding (stability, formation) constants are obtained by the Higuchi and Connors method from the linear segment of compound solubility diagrams in CD solutions. It was found that the apparent binding constants of the HP‐γ‐CD complexes of BIA and BOA decrease with increasing temperature. The binding constants of BOA complexes are slightly higher than those of BIA complexes; this can be explained by difference in the hydration degrees of carbonyl and hydroxyl groups. On the basis of the binding constants obtained and their temperature dependences (van't Hoff plot), the enthalpy as well as entropy changes and Gibbs free energies were calculated. It was found that the complexation was characterized by negative changes of enthalpy and entropy, that is, it was controlled by enthalpy changes. The results obtained can be used for the optimization of microcapsulation processes of BOA and BIA with the HP‐γ‐CD application in order to increase solubility and bioavailability of these compounds.  相似文献   
126.
Torsional states caused by vibrations of hydroxyl groups in the methanediol molecule and its two deuterated analogues – DO(CH2)OH and DO(CH2)OD were analysed at MP2/cc-pVTZ and CCSD(T)/cc-pVQZ levels of theory. In the first case, 2D PES and 2D surfaces of kinematic coefficients were calculated with geometry optimisation for all other geometric parameters, and in the second case, only the energy of optimised configurations at the MP2/cc-pVTZ level of theory was determined. Then 2D PES was recounted to the complete basis set (CBS) limit by extrapolating the results of calculations at the MP2/cc-pVTZ and MP2/cc-pVQZ levels of theory The calculated values were then averaged over four equivalent points on the coordinate plane. Hamiltonian matrices were constructed using DVR and Fourier methods. After their subsequent diagonalization, the energies of the stationary torsional states were computed. Their classification by C2V(M) and CS(M) molecular symmetry groups has been performed. The splitting values due to the tunnelling of the thirty most deeply located torsional states in the three studied molecules were also determined. The torsional states, internal rotation barriers, and tunnelling frequencies in the molecules of methanediol and hydrogen trioxide were compared.  相似文献   
127.
128.
The effects of methanol (M) and acetonitrile (A) on the stability of cycloserine (1) have been studied. InfraRed Multiphoton PhotoDissociation (IRMPD) spectroscopy of the ionic species from electrospray ionization tandem mass spectrometry (ESI‐MS) of 1/M and 1/A solutions points to extensive dimerization of 1 to cis‐3,6‐bis(aminooxymethyl)‐2,5‐piperidinedione (2), while the same process is not observed in the ESI‐MS of 1/M solutions. 1D and 2D nuclear magnetic resonance experiments confirmed these findings by showing that partial dimerization of 1 actually takes place at room temperature in acetonitrile even before ESI‐MS analysis. Comparison of nuclear magnetic resonance and IRMPD spectroscopic data from the same 1/A solution suggests that dimerization of cycloserine is enhanced in the ESI source. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号