首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   24篇
化学   391篇
力学   12篇
数学   26篇
物理学   57篇
  2024年   2篇
  2023年   11篇
  2022年   43篇
  2021年   41篇
  2020年   19篇
  2019年   24篇
  2018年   18篇
  2017年   15篇
  2016年   21篇
  2015年   16篇
  2014年   20篇
  2013年   29篇
  2012年   25篇
  2011年   46篇
  2010年   30篇
  2009年   21篇
  2008年   24篇
  2007年   25篇
  2006年   6篇
  2005年   7篇
  2004年   12篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有486条查询结果,搜索用时 12 毫秒
51.
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}?](ClO?)?·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}? ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the ? = -J?(Gd(III))?(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm?1 for 1, -1.7 cm?1 for 2, and -0.22 cm?1 for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of the magnetic coupling. The complex follows the Curie-Weiss law with θ = -2.07 K (-1.44 cm?1).  相似文献   
52.
In the present work, we focus onthe experimental screening of selected electrolytes, which have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries. Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with idle electrode (C+PVDF) and the LiNi0.5Mn1.5O4-based composite as a positive electrode. Some of the solutions were based on the standard 1 M LiPF6 in EC:DMC:DEC = 1:1:1 with/without additives, such as fluoroethylene carbonate, lithium bis(oxalate) borate and lithium difluoro(oxalate)borate. More concentrated solutions of LiPF6 in EC:DMC:DEC = 1:1:1 were also studied. In addition, the solutions of LiBF4 and LiPF6 in various solvents, such as sulfolane, adiponitrile and tris(trimethylsilyl) phosphate, atdifferent concentrations were investigated. A complex study, including cyclic voltammetry, galvanostatic cycling, impedance spectroscopy and ex situ PXRD and EDX, was applied for the first time to such a wide range of electrolytesto provide an objective assessment of the stability of the systems under study. We observed a better anodic stability, including a slower capacity fading during the cycling and lower charge transfer resistance, for the concentrated electrolytes and sulfolane-based solutions. Among the studied electrolytes, the concentrated LiPF6 in EC:DEC:DMC = 1:1:1 performed the best, since it provided both low SEI resistance and stability of the LiNi0.5Mn1.5O4 cathode material.  相似文献   
53.
The first HPLC method for the separation of three paraben preservatives (methyl-, ethyl- and propyl parabens) using a core-shell analytical column is reported in this study. The separation was completed in less than 8 min at a low flow rate of 0.4 mL min−1 and an isocratic mobile phase containing 20% acetonitrile as organic modifier. The backpressure was < 200 bar in all cases, enabling the usage of conventional HPLC equipment. The proposed analytical procedure was validated for linearity (0.5–20 μg L−1), limits of detection (15–43 μg L−1) and quantification (50–142 μg L−1), selectivity, within day (1.3–1.5%) and day-to-day (3.4–4.6%) precision and accuracy. The proposed method has been applied to the determination of the selected paraben preservatives in commercially available hygiene wipes. The mean percent recoveries were found to be in the range of 98.0–98.4%.   相似文献   
54.
55.
In Campylobacterales and related ε-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways.  相似文献   
56.
Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations.  相似文献   
57.
58.
The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.
Figure
Trajectory of a particle transported by fluid flow in microfluidic channel and undergoing the effect of external filed force and lift force.  相似文献   
59.
60.
New Pt complexes of chelating bisguanidines and guanidinate ligands were synthesized and characterized. 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzene (btmgb) was used as a neutral chelating bisguanidine ligand, and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate (hpp(-)) as a guanidinate ligand. The salts [btmgbH](+)[HOB(C(6)F(5))(3)](-) and [btmgbH(2)]Cl(2) and the complexes [(btmgb)PtCl(2)], [(btmgb)PtCl(dmso)](+)[PtCl(3)(dmso)](-), and [(btmgb)PtCl(dmso)](+)[Cl(-)] were synthesized and characterized. In the [btmgbH](+) cation the proton is bound to only one N atom. In the other complexes, both imine N atoms are coordinated to the Pt(II), thus adopting a eta(2)-coordinational mode. The hpp(-) anion, which usually prefers a bridging binding mode in dinuclear complexes, is eta(2)-coordinated in the Pt(IV) complex [(eta(2)-hpp)(hppH)PtCl(2){N(H)C(O)CH(3)}], which is formed (in low yield) by reaction between cis-[(hppH)(2)PtCl(2)] and H(2)O(2) in CH(3)CN.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6 [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号