首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   24篇
化学   391篇
力学   12篇
数学   26篇
物理学   57篇
  2024年   2篇
  2023年   11篇
  2022年   43篇
  2021年   41篇
  2020年   19篇
  2019年   24篇
  2018年   18篇
  2017年   15篇
  2016年   21篇
  2015年   16篇
  2014年   20篇
  2013年   29篇
  2012年   25篇
  2011年   46篇
  2010年   30篇
  2009年   21篇
  2008年   24篇
  2007年   25篇
  2006年   6篇
  2005年   7篇
  2004年   12篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
21.
First‐principles quantum mechanical calculations of NMR chemical shifts and quadrupolar parameters have been carried out to assign the 27Al MAS NMR resonances in gibbsite. The 27Al NMR spectrum shows two signals for octahedral aluminum revealing two aluminum sites coordinated by six hydroxyl groups each, although the crystallographic positions of the two Al sites show little difference. The presence of two distinguished 27Al NMR resonances characterized by rather similar chemical shifts but quadrupolar coupling constants differing by roughly a factor of two is explained by different character of the hydrogen bonds, in which the hydroxyls forming the corresponding octahedron around each aluminum site, are involved. The Al‐I site characterized by a CQ = 4.6 MHz is surrounded by OH? groups participating in four intralayer and two interlayer hydrogen bonds, while the Al‐II site with the smaller quadrupolar constant (2.2 MHz) is coordinated by hydroxides, of which two point toward the intralayer cavities and four OH‐bonds are aligned toward the interlayer gallery. In high‐resolution solid‐state 1H CRAMPS (combination of rotation and multiple‐pulse spectroscopy) four signals with an intensity ratio of 1:2:2:1 are resolved which allow to distinguish six nonequivalent hydrogen sites reported in the gibbsite crystal structure and to ascribe them to two types of structural OH groups associated with intralayer and interlayer hydrogen bonds. This study can be applied to characterize the gibbsite‐like layer—intergallery interactions associated with hydrogen bonding in the more complex systems, such as synthetic aluminum layered double hydroxides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
22.
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.  相似文献   
23.
Chromatographic retention data were measured for a wide range of organic solutes on 1-butyl-1-methylpyrolidinium tris(pentafluoroethyl)trifluorophosphate ([BMPyrr]+[FAP]?), 1-butyl-1-methylpyrrolidinium triflate, ([BMPyrr]+[Trif]?), and 1-methoxyethyl-1-methylmorpholinium tris(pentafluoroethyl)trifluorophosphate, ([MeoeMMorp]+[FAP]?), stationary phases at (323, 353 and 383) K. The measured retention factors were combined with published infinite dilution activity coefficient and gas-to-water partition coefficient data to yield gas-to-anhydrous ionic liquid (IL) and water-to-anhydrous IL partition coefficients. The three sets of partition coefficients were analyzed using the Abraham model. The derived Abraham model correlations describe the observed gas-to-IL (log10 K) and water-to-IL (log10 P) partition coefficient data to within average standard deviations of about 0.11 and 0.15 log10 units, respectively.  相似文献   
24.
Structural modification at the 2′‐O‐position of riboses in oligonucleotide therapeutics is of critical importance for their use as drugs. To date, the methoxyethyl (MOE) substituent is the most important and features in dozens of antisense oligonucleotides that have been tested in clinical trials. Yet, the search for new improved modifications continues in a quest for increased oligonucleotide potency, improved transport in vivo and favorable metabolism. Recently, we described how the conjugation of spermine groups to pyrimidines in oligonucleotides vastly increases their affinity for complementary RNAs through accelerated binding kinetics. Here we describe how spermines can be linked to the exocyclic amino groups of cytidines in MOE‐oligonucleotides employing a straightforward ‘convertible nucleoside approach’ during solid phase synthesis. Singly‐ or doubly‐modified oligonucleotides show greatly enhanced affinity for complementary RNA, with potential for a new generation of MOE‐based oligonucleotide drugs.  相似文献   
25.
26.
We studied photoacclimation in Spathiphyllum grown at an irradiance of 40 or 420 micromol/m2 s (LL or HL, respectively). All parameters studied responded to acclimation. Leaves at LL, in contrast to HL, were thinner and oriented perpendicular to the incident light, had more chlorophyll per g f w, fewer stomata on the upper leaf surface and a reduced layer of mesophyll cells. Their chloroplasts at HL had wider grana with less thylakoids per granum, and better organized photosystems than at LL. PSI and PSII activities per mg chlorophyll ( Vmax ), and PSI and PSII content (total activity per g f w), were lower at LL than at HL and so was the light requirement for saturation of the PSI or PSII partial photoreactions, suggesting that fewer photosystems with larger antenna size prevail at LL, but many more with smaller antenna size at HL. Analysis of chlorophyll distribution among the thylakoid pigment-protein complexes showed less antenna chlorophyll serving PSII (CPa+LHCP1+LHCP3) than that serving PSI (CPIa+CPI+LHCP2) at LL as compared to HL, and thus a lower PSII/PSI ratio at LL, in agreement with the general finding that LL plants, with larger PSII antenna size, have lower PSII/PSI ratio. The increase in PSI antenna size at LL was correlated with the increase in the distribution of chlorophyll in pigment-protein complexes serving PSI, and a very large chlorophyll/protein molar ratio in the isolated CPI complex. On the other hand, the PSII antenna chlorophyll (CPa+LHCP1+LHCP3) on a g f w basis, and the chlorophyll a/b ratio remained more or less constant at LL or HL. This may reflect our finding that Spathiphyllum contains mainly the 27 kDa inner LHCII antenna protein, the size of which remains unaffected by photoacclimation. The increase in the distribution of chlorophyll in pigment-protein complexes serving PSII at HL, therefore, reflects the higher population of PSII at HL. Very high PSI activity was found at HL, which we attribute to the highly organized small in size PSI.  相似文献   
27.
The binding of an anticancer drug (actinomycin D or ACTD) to double-stranded DNA (dsDNA) was studied by means of high-performance liquid chromatography (HPLC). ACTD is an antitumor antibiotic containing one chromophore group and two pentapeptidic lactone cycles that binds dsDNA. Incubations of ACTD with DNA were performed at physiological pH. The complexed and free ligand concentrations of the mixture were quantified at 440 nm from their separation on a size-exclusion chromatographic (SEC) column using the same buffer for the elution and the sample incubation. The DNA and the ACTD-DNA complexes were eluted at the column exclusion volume while the ligand was retained on the support. An apparent binding curve was obtained by plotting the amount emerging at the exclusion column volume against that eluted at free ACTD retention volume. A dissociating effect was evidenced and the binding parameters were significantly different from those obtained at equilibrium by visible absorbance titration. The equilibrium binding parameters determined by absorption spectroscopy were used as starting data in the numerical simulations of the chromatographic process. The results showed a strong dependency of the apparent binding parameters on the reaction kinetics. Finally the comparison of the apparent binding curve obtained from the HPLC experiments and from the numerical simulations permitted an evaluation of the dissociation rate constant (kd = 0.004 s(-1)).  相似文献   
28.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10?3 S cm?1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.  相似文献   
29.
Pollution from pharmaceuticals in the aquatic environment is now recognized as an environmental concern in many countries. This has led to the creation of an extensive area of research, including among others: their chemical identification and quantification; elucidation of transformation pathways when present in wastewater-treatment plants or in environmental matrices; assessment of their potential biological effects; and development and application of advanced treatment processes for their removal and/or mineralization. Pharmaceuticals are a unique category of pollutants, because of their special characteristics, and their behavior and fate cannot be simulated with other chemical organic contaminants. Over the last decade the scientific community has embraced research in this specific field and the outcome has been immense. This was facilitated by advances in chromatographic techniques and relevant biological assays. Despite this, a number of unanswered questions exist and still there is much room for development and work towards a more solid understanding of the actual consequences of the release of pharmaceuticals in the environment. This review tries to present part of the knowledge that is currently available with regard to the occurrence of pharmaceutical residues in aquatic matrices, the progress made during the last several years on identification of such compounds down to trace levels, and of new, previously unidentified, pharmaceuticals such as illicit drugs, metabolites, and photo-products. It also tries to discuss the main recent findings in respect of the capacity of various treatment technologies to remove these contaminants and to highlight some of the adverse effects that may be related to their ubiquitous existence. Finally, socioeconomic measures that may be able to hinder the introduction of such compounds into the environment are briefly discussed.  相似文献   
30.
QuEChERS and solid phase extraction (SPE) methods were applied for determining four herbicides (metazachlor, oxyfluorfen, quizalofop-p-ethyl, quinmerac) and one insecticide (α(±)-cypermethrin) in runoff water, soil, sunflower and oilseed rape plant matrices. Determination was performed using gas chromatography mass spectrometry (GC-MS), whereas high-pressure liquid chromatography mass spectrometry (HPLC-MS) was used for quinmerac. In all substrates linearity was evaluated using matrix-matched calibration samples at five concentration levels (50–1000 ng L?1 for water, 5–500 μg kg?1 for soil and 2.5–500 μg kg?1 for sunflower or oilseed rape plant). Correlation coefficient was higher than 0.992 for all pesticides in all substrates. Acceptable mean recovery values were obtained for all pesticides in water (65.4–108.8%), soil (70.0–110.0%) and plant (66.1–118.6%), with intra- and inter-day RSD% below 20%. LODs were in the range of 0.250–26.6 ng L?1 for water, 0.10–1.8 μg kg?1 for soil and 0.15–2.0 μg kg?1 for plants. The methods can be efficiently applied for field dissipation studies of the pesticides in energy crop cultivations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号