首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   25篇
化学   199篇
晶体学   5篇
力学   3篇
数学   17篇
物理学   47篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   9篇
  2014年   15篇
  2013年   15篇
  2012年   16篇
  2011年   12篇
  2010年   10篇
  2009年   11篇
  2008年   19篇
  2007年   17篇
  2006年   11篇
  2005年   11篇
  2004年   14篇
  2003年   12篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1966年   2篇
排序方式: 共有271条查询结果,搜索用时 31 毫秒
51.
The coordinatively unsaturated chromium(II)-based Cr3[(Cr4Cl)3(BTT)8]2 (Cr−BTT; BTT3−=1,3,5-benzenetristetrazolate) metal–organic framework (MOF) has been shown to exhibit exceptional selectivity towards adsorption of O2 over N2/H2. Using periodic density functional theory (DFT) calculations, we attempted to decipher the origin of this puzzling selectivity. By computing and analyzing the magnetic exchange coupling, binding energies, the partial density of states (pDOS), and adsorption isotherms for the pristine and gas-bound MOFs [(Cr4(X)4Cl)3(BTT)8]3− (X=O2, N2, and H2), we unequivocally established the role of spin states and spin coupling in controlling the gas selectivity. The computed geometries and gas adsorption isotherms are consistent with the earlier experiments. The binding of O2 to the MOF follows an electron-transfer mechanism resulting in a CrIII superoxo species (O2.−) with a very strong antiferromagnetic coupling between the two centers, whereas N2/H2 are found to weakly interact with the metal center and hence only slightly perturb the associated coupling constants. Although the gas-bound and unbound MOFs have an S=0 ground state (GS), the nature of spin the configurations and the associated magnetic exchanges are dramatically different. The binding energy and the number of oxygen molecules that can favorably bind to the Cr center were found to vary with respect to the spin state, with a significant energy margin (47.6 kJ mol−1). This study offers a hitherto unknown strategy of using spin state/spin couplings to control gas adsorption selectivity in MOFs.  相似文献   
52.
The FeII complexes of two isomeric pentadentate bispidine ligands in the presence of H2O2 are catalytically active for the epoxidation and 1,2-dihydroxylation of cyclooctene (bispidine = 3,7-diazabicyclo[3.3.1]nonane; the two isomeric pentadentate bispidine ligands discussed here have two tertiary amine and three pyridine donors). The published spectroscopic and mechanistic data, which include an extensive set of 18O labeling experiments, suggest that the FeIV=O complex is the catalytically active species, which produces epoxide as well as cis- and trans-1,2-dihydroxylated products. Several observations from the published experimental study are addressed with hybrid density functional methods and, in general, the calculations support the proposed, for nonheme iron model systems novel mechanism, where the formation of a radical intermediate emerges from the reaction of the FeIV=O oxidant and cyclooctene. The calculations suggest that the S = 1 ground state of the FeIV=O complex reacts with cyclooctene in a stepwise reaction, leading to the formation of a carbon-based radical intermediate. This radical is captured by O2 from air to produce the majority of the epoxide products in an aerobic atmosphere. Under anaerobic conditions, the produced epoxide product is due to the cyclization of the radical intermediate. Several possible spin states (ST = 3, 2, 1, 0) of the radical intermediate are close in energy. As a result of the substantial energy barrier, calculated for the ST = 3 spin ground state, a spin-crossover during the cyclization step is assumed, and a possible two-state scenario is found, where the S = 2 state of the FeIV=O complex participates in the catalytic mechanism. The 1,2-dihydroxylation proceeds, as suggested by experiment, via an unprecedented pathway, where the radical intermediate is captured by a hydroxyl radical, the source of which is FeIII-OOH, and this reaction is barrierless. The calculations suggest that dihydroxylation can also occur by a direct oxidation pathway from FeIII-OOH. The strikingly different reactivities observed with the two isomeric bispidine FeII complexes are rationalized on the basis of structural and electronic differences.  相似文献   
53.
Herein, we report a detailed periodic DFT investigation of Mn(II)-based [(Mn4Cl)3(BTT)8]3− (BTT3−=1,3,5-benzenetristetrazolate) metal-organic framework (MOF) to explore various hydrogen binding pockets, nature of MOF…H2 interactions, magnetic coupling and, H2 uptake capacity. Earlier experiments found an uptake capacity of 6.9 wt % of H2, with the heat of adsorption estimated to be ∼10 kJ/mol, which is one among the highest for any MOFs reported. Our calculations unveil different binding sites with computed binding energy varying from −6 to −15 kJ/mol. The binding of H2 at the Mn2+ site is found to be the strongest (site I), with H2 found to bind Mn2+ ion in a η2 fashion with a distance of 2.27 Å and binding energy of −15.4 kJ/mol. The bonding analysis performed using NBO and AIM reveal a strong donation of σ (H2) to the dz2 orbital of the Mn2+ ion responsible for such large binding energy. The other binding pockets, such as −Cl (site II) and BTT ligands (site III and IV) were found to be weaker, with the binding energy decreasing in the order I>II>III>IV. The average binding energy computed for these four sites put together is 9.6 kJ/mol, which is in excellent agreement with the experimental value of ∼10 kJ/mol. We have expanded our calculations to compute binding energy for multiple sites simultaneously, and in this model, the binding energy per site was found to decrease as we increased the number of H2 molecules suggesting electronic and steric factors controlling the overall uptake capacity. The calculated adsorption isotherm using the GCMC method reproduces the experimental observations. Further, the magnetic coupling computed for the unbound MOF reveals moderate ferromagnetic and strong antiferromagnetic coupling within the tetrameric {Mn4} unit leading to a three-up-one-down spin configuration as the ground state. These were then coupled ferromagnetically to other tetrameric units in the MOF network. The magnetic coupling was found to alter only marginally upon gas binding, suggesting that both exchange interaction and the spin-states are unlikely to play a role in the H2 uptake. This is contrary to the O2 uptake studied lately, where strong dependence on exchange-coupling/spin state was witnessed, suggesting exchange-coupling/magnetic field dependent binding as a viable route for gas separation.  相似文献   
54.
Deep‐blue fluorescent emitters with Commission Internationale de l'Eclairage (CIE) y≤0.06 are urgently needed for high‐density storage, full‐color displays and solid‐state lighting. However, developing such emitters with high color purity and efficiency in solution‐processable non‐doped organic light‐emitting diodes (OLEDs) remains an important challenge. Here, we present the synthesis of two new deep‐blue fluorescent emitters ( AFpTPI and AFmTPI ) based on 10‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐9,9‐dimethyl‐9,10‐dihydroacridine as a core and 1,3‐ and/or 1,4‐phenylene‐linked triphenylimidazole (TPI) analogues for non‐doped solution‐processable OLEDs. Their thermal, photophysical, electrochemical, and device characteristics are explored, and also strongly supported by density functional theory (DFT) study. AFpTPI and AFmTPI exhibit excellent thermal stability (≈450 °C) with high glass transition temperatures (Tg; 141–152 °C) and deep‐blue emission with high quantum yields. Specifically, the solution‐processed non‐doped device with AFpTPI as an emitter exhibits a maximum external quantum efficiency (EQE) of 4.56 % with CIE coordinates of (0.15, 0.06), which exactly matches the European Broadcasting Union (EBU) blue standard. In addition, AFmTPI also displays good efficiency and better color purity (EQE: 3.37 %; CIE (0.15, 0.05)). To the best of our knowledge, the present work is the first report on non‐doped solution‐processable OLEDs with efficiency close to 5 % and CIE y≤0.06.  相似文献   
55.
While the blocking barrier (Ueff) and blocking temperature (TB) for “Dysprocenium” SIMs have been increased beyond liquid N2 temperature, device fabrication of these molecules remains a challenge as low-coordinate Ln3+ complexes are very unstable. Encapsulating the lanthanide ion inside a cage such as a fullerene (called endohedral metallofullerene or EMF) opens up a new avenue leading to several Ln@EMF SMMs. The ab initio CASSCF calculations play a pivotal role in identifying target metal ions and suitable cages in this area. Encouraged by our earlier prediction on Ln2@C79N, which was verified by experiments, here we have undertaken a search to enhance the exchange coupling in this class of molecules beyond the highest reported value. Using DFT and ab initio calculations, we have studied a series of Gd2@C2n (30 ≤ 2n ≤ 80), where an antiferromagnetic JGd⋯Gd of −43 cm−1 was found for a stable Gd2@C38-D3h cage. This extremely large and exceptionally rare 4f⋯4f interaction results from a direct overlap of 4f orbitals due to the confinement effect. In larger cages such as Gd2@C60 and Gd2@C80, the formation of two centre-one-electron (2c-1e) Gd–Gd bonds is perceived. This results in a radical formation in the fullerene cage leading to its instability. To avoid this, we have studied heterofullerenes where one of the carbon atoms is replaced by a nitrogen atom. Specifically, we have studied Ln2@C59N and Ln2@C79N, where strong delocalisation of the electron yields a mixed valence-like behaviour. This suggests a double-exchange (B) is operational, and CASSCF calculations yield a B value of 434.8 cm−1 and resultant JGd–rad of 869.5 cm−1 for the Gd2@C59N complex. These parameters are found to be two times larger than the world-record J reported for Gd2@C79N. Further ab initio calculations reveal an unprecedented Ucal of 1183 and 1501 cm−1 for Dy2@C59N and Tb2@C59N, respectively. Thus, this study offers strong exchange coupling as criteria for new generation SMMs as the existing idea of enhancing the blocking barrier via crystal field modulation has reached its saturation point.

Using ab initio calculations, we have made some robust predictions towards lanthanofullerene SMMs exhibiting remarkable characteristics.  相似文献   
56.
Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.  相似文献   
57.
In this investigation, we have characterized the Na2SO4 using differential scanning calorimetry (DSC). It is well known that Na2SO4 exhibits five polymorphs. However, the experimental evidence for all five polymorphs has never been observed in DSC. In this investigation, the five polymorphic transformations have been observed in heating cycle. Furthermore, the transition I–II is observed, which is not reversible. In addition, phase transition temperature for V→IV and IV→III transition appears to be much closed and may get unnoticed.  相似文献   
58.
Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L21 austenitic phase.  相似文献   
59.
The synthesis and crystal structures of a family of decametallic Cr(III) "molecular wheels" are reported, namely [Cr10(OR)20(O2CR')10] [R' = Me, R = Me (1), Et (2); R' = Et, R = Me (3), Et (4); R' = CMe3, R = Me (5), Et (6)]. Magnetic studies on 1-6 reveal a remarkable dependence of the magnetic behaviour on the nature of R. In each pair of complexes with a common carboxylate (R') the nearest neighbour CrCr magnetic exchange coupling is more antiferromagnetic for the ethoxide-bridged (R = Et) cluster than for the methoxide analogue. In complexes 2, 4 and 6 the overall coupling is weakly antiferromagnetic resulting in diamagnetic (S = 0) ground states for the cluster, whilst in 1 and 5 it is weakly ferromagnetic thus resulting in very high-spin ground states. This ground state has been probed directly in the perdeuterated version of 1 ([D]1) by inelastic neutron scattering experiments, and these support the S = 15 ground state expected for ferromagnetic coupling of ten Cr(III) ions, and they also indicate that a single J-value model is inadequate. The ground state of 5 is large but not well defined. The trends in J on changing R are further supported by density functional calculations on 1-6, which are in excellent agreement with experiment. The very large changes in the nature of the ground state between 1 and 2, and 5 and 6 are the result of relatively small changes in J that happen to cross J = 0, hence changing the sign of J.  相似文献   
60.
In this study, we explored the ability of a preheated solvent (methanol) to induce characteristic changes at the organic active layer/metal interface, thereby improving the performance of fabricated organic photovoltaic (OPV) cells composed of poly(3-hexylthiopene) (P3HT) and a [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) photoactive blend. Our results demonstrate that exposure to methanol (at room temperature, or preheated at 45 °C or 65 °C) improves the performance of the fabricated OPV cells. After preheated methanol exposure, the P3HT:PCBM thin films were tested for crystallinity, morphology, mobility, and photovoltaic characteristics. Our results revealed that use of the preheated solvent on the organic active layer significantly influences the micro/nano scale morphology and phase segregation of the P3HT:PCBM thin films, as well as the charge carrier mobility. It is hypothesized that the side chain ordering of P3HT and redistribution of PCBM could be results of the modified active layer. Consequently, OPV cells modified with the methanol preheated at 65 °C exhibited a power conversion efficiency (PCE) of 3.36%, with open-circuit voltage of 0.59 V, short-circuit current density of 13.83 mA/cm2, and fill-factor of 0.41. In contrast, the unmodified P3HT:PCBM thin film (without methanol exposure) showed a PCE of only 2.13%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号