首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5009篇
  免费   238篇
  国内免费   22篇
化学   4302篇
晶体学   28篇
力学   40篇
数学   455篇
物理学   444篇
  2024年   3篇
  2023年   49篇
  2022年   193篇
  2021年   228篇
  2020年   149篇
  2019年   133篇
  2018年   83篇
  2017年   94篇
  2016年   190篇
  2015年   192篇
  2014年   199篇
  2013年   314篇
  2012年   393篇
  2011年   431篇
  2010年   286篇
  2009年   262篇
  2008年   339篇
  2007年   346篇
  2006年   271篇
  2005年   268篇
  2004年   203篇
  2003年   168篇
  2002年   153篇
  2001年   37篇
  2000年   30篇
  1999年   32篇
  1998年   22篇
  1997年   27篇
  1996年   25篇
  1995年   22篇
  1994年   9篇
  1993年   11篇
  1992年   10篇
  1991年   12篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1967年   1篇
  1965年   2篇
排序方式: 共有5269条查询结果,搜索用时 15 毫秒
241.
Diabetes mellitus is a metabolic disease characterized by abnormally high plasma glucose levels, leading to major complications, such as insulin resistance, obesity, hyperlipidemia, and hypertension, also with alterations in the immune and neuronal systems. Brazilian plants have been studied as important sources for new molecules with medicinal properties. The genus Passiflora known as “Maracujá” has been used as a traditional folk medicine for a long time, so an investigation was performed regarding an endemic kind of passion fruit (Passiflora nitida Kunth) from Amazonas, Brazil. Here, we aimed to determine its potential biological activity against metabolic syndrome, oxidative stress, pain, and inflammation. The hydroethanol leaf extract revealed an in vitro α-glucosidase inhibitory activity of 50 % inhibitory concentration (IC50)?=?6.78?±?0.31 μg/mL and an α-amylase inhibition of IC50?=?93.36?±?4.37. In vivo, experiments of different saccharide tolerance resulted in significant glycemia control and, with alloxan-diabetic mice, resulted in a decrease of total cholesterol, a hypoglycemic effect, and an antioxidant activity by thiobarbituric acid-reactive substances measurement. Also, it decreased the carrageenan-induced edema volume and the rate of writhing as a nociceptive response. These results indicate positive effects of P. nitida extract and its potential to inhibit metabolic syndrome.  相似文献   
242.
Large-scale amine-based CO2 capture will generate waste containing large amounts of ammonia, in addition to contaminants such as the actual amine as well as degradation products thereof. Monoethanolamine (MEA) has been a dominant amine applied so far in this context. This study reveals how biological N removal can be achieved even in systems heavily contaminated by MEA in post- as well as pre-denitrification treatment systems, elucidating the rate-limiting factors of nitrification as well as aerobic and denitrifying biodegradation of MEA. The hydrolysis of MEA to ammonia readily occurred both in post- and pre-denitrification treatment systems with a hydraulic retention time of 7 h. MEA removal was ≥99?±?1 % and total nitrogen removal 77?±?10 % in both treatment systems. This study clearly demonstrates the advantage of pre-denitrification over post-denitrification for achieving biological nitrogen removal from MEA-contaminated effluents. Besides the removal of MEA, the removal efficiency of total nitrogen as well as organic matter was high without additional carbon source supplied.  相似文献   
243.
The search for materials produced from renewable sources aiming at the substitution of petroleum‐based derivates is an area of intense investigation. In this work, the enzymatic copolymerization of isosorbide or isomannide with diethyl adipate and fractions of different unsaturated diesters (diethyl itaconate, diethyl fumarate, diethyl glutaconate, and diethyl hydromuconate) were examined using CAL‐B as catalyst. The polyesters prepared using one‐step syntheses were characterized by SEC, NMR, and MALDI‐TOF MS. In addition, syntheses with linear diols were carried out in bulk to evaluate the reactivity of cyclic diols in producing unsaturated polyesters using enzymatic catalysis, as well as to evaluate the occurrence of addition side reactions on the double bonds. Isosorbide and isomannide yielded unsaturated polymers with values in the order of 4,000‐16,000 when fumarate or glutaconate esters were added in 5 mol % ratio against adipate. In all cases MALDI‐TOF confirmed the presence of unsaturated units. Although these polyesters have unreacted double bonds they are prone to crosslinking and ready to further functionalization, like anchoring bioactive molecules. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3881–3891  相似文献   
244.
We present a chemical strategy to engineer analogs of the tumor-homing peptide CREKA (Cys-Arg-Glu-Lys-Ala), which binds to fibrin and fibrin-associated clotted plasma proteins in tumor vessels (Simberg et al. in Proc Natl Acad Sci USA 104:932–936, 2007) with improved ability to inhibit tumor growth. Computer modeling using a combination of simulated annealing and molecular dynamics were carried out to design targeted replacements aimed at enhancing the stability of the bioactive conformation of CREKA. Because this conformation presents a pocket-like shape with the charged groups of Arg, Glu and Lys pointing outward, non-proteinogenic amino acids α-methyl and N-methyl derivatives of Arg, Glu and Lys were selected, rationally designed and incorporated into CREKA analogs. The stabilization of the bioactive conformation predicted by the modeling for the different CREKA analogs matched the tumor fluorescence results, with tumor accumulation increasing with stabilization. Here we report the modeling, synthetic procedures, and new biological assays used to test the efficacy and utility of the analogs. Combined, our results show how studies based on multi-disciplinary collaboration can converge and lead to useful biomedical advances.  相似文献   
245.
Increased resistance of Plasmodium falciparum to most available drugs challenges the control of malaria. Studies with protease inhibitors have suggested important roles for the falcipain family of cysteine proteases. These enzymes act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. In order to find potential new antimalarial drugs, we screened in silico the ZINC database using two different protocols involving structure- and ligand-based methodologies. Our search identified 19 novel low micromolar inhibitors of cultured chloroquine resistant P. falciparum. The most active compound presented an IC50 value of 0.5 μM against cultured parasites and it also inhibited the cysteine protease falcipain-2 (IC50 = 25.5 μM). These results identify novel classes of antimalarials that are structurally different from those currently in use and which can be further derivatized to deliver leads suitable for optimisation.  相似文献   
246.
247.
Designing small peptides that are capable of binding Cu2+ ions mainly through the side‐chain functionalities is a hard task because the amide nitrogen atoms strongly compete for Cu2+ ion coordination. However, the design of such peptides is important for obtaining biomimetic small systems of metalloenyzmes as well as for the development of artificial systems. With this in mind, a cyclic decapeptide, C‐Asp, which contained three His residues and one Asp residue, and its linear derivative, O‐Asp, were synthesized. The C‐Asp peptide has two Pro? Gly β‐turn‐inducer units and, as a result of cyclization, and as shown by CD spectroscopy, its backbone is constrained into a more defined conformation than O‐Asp, which is linear and contains a single Pro? Gly unit. A detailed potentiometric, mass spectrometric, and spectroscopic study (UV/Vis, CD, and EPR spectroscopy) showed that at a 1:1 Cu2+/peptide ratio, both peptides formed a major [CuHL]2+ species in the pH range 5.0–7.5 (C‐Asp) and 5.5–7.0 (O‐Asp). The corrected stability constants of the protonated species (log K*CuH(O?Asp)=9.28 and log K*CuH(C?Asp)=10.79) indicate that the cyclic peptide binds Cu2+ ions with higher affinity. In addition, the calculated value of Keff shows that this higher affinity for Cu2+ ions prevails at all pH values, not only for a 1:1 ratio but even for a 2:1 ratio. The spectroscopic data of both [CuHL]2+ species are consistent with the exclusive coordination of Cu2+ ions by the side‐chain functionalities of the three His residues and the Asp residue in a square‐planar or square‐pyramidal geometry. Nonetheless, although these data show that, upon metal coordination, both peptides adopt a similar fold, the larger conformational constraints that are present in the cyclic scaffold results in different behaviour for both [CuHL]2+ species. CD and NMR analysis revealed the formation of a more rigid structure and a slower Cu2+‐exchange rate for [CuH(C‐Asp)]2+ compared to [CuH(O‐Asp]2+. This detailed comparative study shows that cyclization has a remarkable effect on the Cu2+‐coordination properties of the C‐Asp peptide, which binds Cu2+ ions with higher affinity at all pH values, stabilizes the [CuHL]2+ species in a wider pH range, and has a slower Cu2+‐exchange rate compared to O‐Asp.  相似文献   
248.
Stabilization of the central atom in an oxidation state of zero through coordination of neutral ligands is a common bonding motif in transition‐metal chemistry. However, the stabilization of main‐group elements in an oxidation state of zero by neutral ligands is rare. Herein, we report that the transamination reaction of the DAMPY ligand system (DAMPY=2,6‐[ArNH‐CH2]2(NC5H3) (Ar=C6H3‐2,6‐iPr2)) with Sn[N(SiMe3)2]2 produces the DIMPYSn complex (DIMPY=(2,6‐[ArN?CH]2(NC5H3)) with the Sn atom in a formal oxidation state of zero. This is the first example of a tin compound stabilized in a formal oxidation state of zero by only one donor molecule. Furthermore, three related low‐valent SnII complexes, including a [DIMPYSnIICl]+[SnCl3]? ion pair, a bisstannylene DAMPY{SnII[N(SiMe3)2]2}2, and the enamine complex MeDIMPYSnII, were isolated. Experimental results and the conclusions drawn are also supported by theoretical studies at the density functional level of theory and 119Sn Mössbauer spectroscopy.  相似文献   
249.
250.
Hybrid organic–inorganic solids represent an important class of engineering materials, usually prepared by sol–gel processes by cross‐reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3‐Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid‐material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 2–11) was deeply investigated for the first time by solution‐state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy‐ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of sol–gel hybrid biomaterials with tuneable properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号